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Monte Carlo simulation of solute aggregation in binary alloys:
Domain boundary precipitation and domain growth
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Domain boundary precipitation and domain growth in binary polycrystalline materials are studied by apply-
ing the Monte Carlo simulation in two-dimensional squared lattice. The simulation is carried out on a hybrid
lattice of the kinetic spin-exchange Ising model coupled with theQ-state Potts model. First of all, the static
properties of this coupled model are studied, predicting just a small shiftdown of the critical point with
enhanced Potts interactions. Subsequently, the dynamic properties, such as morphology and coarsening kinet-
ics of the second phase precipitates as well as kinetics and scaling of the domain growth, are investigated in
detail. Pronounced second phase precipitation at domain boundaries is observed at a temperature range just
below critical pointTc as long as the solutes prefer to segregate onto the boundaries. However, the boundary
precipitation is significantly prohibited at either high or low temperatures (T@Tc or T!Tc). We demonstrate
that the domain growth is slowed down due to the pinning effect of the precipitates at the boundaries, no matter
what the boundary migration ability is. The kinetics of boundary precipitation and domain growth in various
systems are simulated. Both the Lifshitz-Slyozov-Wagner law for second phase coarsening and the linear law
for the normal domain growth become broken due to the domain boundary precipitation. The scaling behavior
of the domain growth is identified in present systems although a further confirmation may be required.
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I. INTRODUCTION

When a solid solution is submitted into the two-pha
coexisting range of the temperature-composition diagram
second phase precipitates from the matrix of the pa
phase. This problem represents one of the fundamental fi
in condensed matters and materials science. For a hom
neous system, the early stage of precipitation may be ide
fied as either nucleation, consequent growth and coarse
of the second phase, or spinodal decomposition, depen
on temperatureT and alloy compositionC0 .1–4 Much effort
in development of microscopic techniques has been mad
last decade in order to study the very early stage of prec
tation, although the short time and nanospatial scales ma
a big challenge to the researchers.1,3 Up to date, the theoret
ical scheme of phase precipitation may not be so optimis
there still remain some uncertainties due to the great c
plexity of the problem.1,3,4 Nevertheless, toward the lat
stage the physical picture becomes simple. The two-ph
microstructure can be characterized with the spatial corr
tion function g(r ,t), which exhibits unique characteristi
length and follows the scaling concept.5–7 The characteristic
length l c evolves according to the well-known Lifshitz
Slyozov-Wagner~LSW! law.8,9 This law has recently bee
demonstrated even for the highly concentrated alloys as
as the system is of short-range interaction, noting that sev
other laws were proposed previously.10–12
PRB 600163-1829/99/60~10!/7113~14!/$15.00
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The real materials may not be always homogeneo
where various types of defects like vacancies, dislocatio
domain boundaries~DB’s! and so on, are involved. The pre
erable precipitation of the second phase around these de
was observed a long time ago.13 In particular, vacancies are
helpful for phase precipitation. Due to structural differenc
the new phase may introduce elastic strain, which modula
the morphology and changes the kinetics of precipitation14

In this case, controversial results on the late stage kinetic
precipitation were reported.10–12,15Furthermore, most mate
rials under service are polycrystalline so that the dom
~grain! boundaries must be considered.13 In fact, the materi-
als’ property depends essentially on domain size, while
main boundary segregation is a common phenomenon in

terials processing.16–21This allows one to argue that the re
kinetics of second phase precipitation may be very differ
from the homogeneous phase transformations.

On the other hand, domain growth represents a comm
materials process. Growth of the larger domains in conc
with shrinking of the smaller ones is driven by the exce
free energy associated with the DB’s.22,23 For two-
dimensional lattice, it is well understood that apart from t
very early stage, the average domain size follows the w
known kinetics of̂ A&;t, where^A& is the average domain
area andt is time. The normalized domain size distributio
keeps stationary with time, i.e., the so-called scal
7113 ©1999 The American Physical Society
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state.24–26However, a new complexity appears as the dom
growth is coupled with additional processes, for examp
when domain boundary segregation or precipitation occur
parallel.17 The domain growth is then expected to be pinn
by segregated solutes or precipitates at DB’s. The bound
property will be significantly modified too. These problem
have been of special interest to physicists and materials
searchers. For example, Fan and co-workers27,28 investigated
the diffusion controlled domain growth with second pha
precipitates trapped at DB’s. A series of new effects are p
dicted from their phase-field theory that is critical to o
understanding of the coupling phenomena during microst
tural evolution of multiphased materials.

In a previous paper29 we developed a Monte Carlo~MC!
approach of a hybrid model in which the kinetic spi
exchange Ising model30,31 and theQ-state Potts model32 are
combined in order to study the solute segregation phen
enon at DB’s. The domain boundary segregation in bin
multidomained alloys was simulated in detail. This approa
can be directly extended to simulate phase precipita
problems in such a system. Furthermore, a study of the s
properties of such a hybrid model is essential too. In parti
lar, the critical pointTc of the system where highly degen
erated states~Potts spins! are introduced may be differen
from the pure Ising system conventionally applied to a
proach phase precipitation. In this article, we are going
study by the MC method the static properties of this hyb
system. Then, a detailed simulation of the second phase
cipitation in this system will be done, whereas doma
growth is considered as a parallel sequence. We pay atten
to the kinetics of domain boundary precipitation and dom
growth. The problems we are interested in are: depende
of Tc on the Potts-spin interaction, morphology and kine
features of the precipitates at DB’s, the LSW law to be co
firmed in this hybrid model, dynamic scaling behavior, d
main growth kinetics, and scaling of domain size distrib
tion. After main results are presented, some relevance of
model with real alloy systems will be discussed, such as
effect of vacancies and ordered compound precipitates.
remaining part of this paper is organized as follow. In Sec
we will briefly describe the hybrid mode. The static prope
ties of this model will be studied in Sec. III and the simulat
results of the kinetics will be presented in Sec. IV with e
tended discussion. In Sec. V we explore the possible
evance of this model with real alloy systems. The conclus
will be given in Sec. VI.

II. BRIEF DESCRIPTION OF MODEL

In our approach we assume that the phase transforma
is diffusion dominant, without involving lattice reconstru
tion. The approach is developed for the two-dimensio
case. An extension to the three-dimensional one is direc

We start from a two-dimensional squaredL3L lattice
with periodic boundary conditions applied. For modeli
species diffusion in the lattice, the spin-exchange Is
model is used, with conserved number of total sp
states.30,31Each site is occupied by one species,A or B, with
the Ising spin parameterSi50 for A and Si51 for B. The
alloy composition is thenC05NB /(NA1NB), whereNA and
NB are the numbers of speciesA andB, respectively, and the
n
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total spin numberN5NA1NB . In our model, only the
nearest-neighboring part of the spin-interaction is accoun
for. What we should point out here is that the diffusion
real alloys performs via the spin-vacancy exchange33 instead
of the direct spin-exchange mechanism assumed here.
shall come back to this argument in Sec. V A. On the ot
hand, the domain degeneracy of the lattice is expressed bQ
spins in theQ-state Potts model and upon each site is i
posed one of theQ multispin states. The Potts spin of a si
represents its lattice orientation. A closed lattice area of id
tical spin represents one domain. If two nearest-neighbo
sites have different spin states, it means that they are on
DB’s. The high-energy state of domain boundary sites a
as the driving force for boundary migration and then dom
growth. We assume that the Ising interaction between
neighboring sites has nothing to do with their Potts spi
whether they are identical or different. This means that
Ising interaction between two nearest-neighboring sites is
dependent of their location, either on DB’s or inside o
domain. The Hamiltonian of the present system,H, can be
written as follows, a detailed derivation of which refers
our previous paper:29

H5HI1HP

52FfAA(̂
i j &

~12Si !~12Sj !1fBB(̂
i j &

SiSj

1fAB(̂
i j &

Si~12Sj !1~12Si !Sj G
2JAA(̂

i j &
~12Si !~12Sj !@~12 f AA!1 f AAdKr~a,b!#

2JBB(̂
i j &

SiSj@~12 f BB!1 f BBdKr~a,b!#

2JAB(̂
i j &

@Si~12Sj !1~12Si !Sj #

3@~12 f AB!1 f ABdKr~a,b!#, ~1!

whereHI andHP represent the Ising part and Potts part ofH,
respectively;fmn (m,n5A,B) denotes the Ising interactio
of nearest-neighboringm-n pair; ^ij & represents that ove
nearest neighbors is summed once;Jmn (>0) is the Potts
interaction factor associated with the Potts-spin pair betw
the Ising spinsm and n; dKr is the Kroneckerd function
which is defined as32

dKr5 b11~Q21!ēa
•ēbc/Q, ~2a!

whereēa (a51,2, . . . ,Q) areQ unit vectors pointing in the
Q symmetric directions of a hypertetrahedron inQ21 dimen-
sions. However, this formula can be simplified in tw
dimensional lattice, i.e., the planar Potts model is utiliz
instead of the standard Potts model:32

dKr5cosS 2p
a2b

Q D . ~2b!

In Eq. ~1! an important variable which defines the behav
of domain boundary segregation isf mn (m,n5A,B) (0
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PRB 60 7115MONTE CARLO SIMULATION OF SOLUTE . . .
<fmn<1), a factor to scale the Potts interaction betwe
Ising spinsm-n. As an example for better understanding
factor f mn , one writes the Potts interaction for Ising spi
pair B-B as

HP
BB52JBB(̂

i j &
SiSj@~12 f BB!1 f BBdKr~a,b!#, ~3a!

whereSi5Sj51. One obtains two extreme situations:

HP
BB5H 2JBB•C0•L2, minimal as f BB50

2JBB(̂
i j &

SiSjdKr~a,b!, maximal as f BB51.

~3b!

At f BB50, HP
BB takes the minimal energy state, showin

no ~a,b! dependence. The dynamic relaxation of the syst
will drive B-B pairs toward the DB’s whose excess boun
ary energy can then be dissipated. Therefore segregatio
B-B pairs onto those DB’s becomes thermodynamically
vorable and irreversible. However, no favorable tendency
B-B pair segregation can be seen iff BB51.0, becauseHP

BB

is completely~a,b! dependent. It reaches the maximum a
function of f BB . As 0, f BB,1, the boundary segregation o
B-B pairs is still favorable but less serious than the case
f BB50. The same behavior is observed, referred to as ei
A-A pair or A-B pair. For the reason of simplification,f AB
5( f AA1 f BB)/2 is always taken in our approach, whatev
f AA or f BB takes.

As fmm50 andfAB,0, it is seen that there is no inte
action between the like Ising pair but repulsive force b
tween the unlike pair, respectively. This results in phase
gregation of the like Ising spins, i.e., second pha
precipitation.34 In fact, fmm50 is not the necessary cond
tion for phase precipitation. Here we define an effective
teraction factorf5(fAA1fBB)/22fAB , so T/Tc , where
kTc /f51.13;1.00 andk is the Boltzmann constant repre
sents the normalized temperature of the system with res
to Tc . In our lattice, there is no probability to form ordere
second phase if only the nearest-neighboring interactio
taken into account.3,35,36 Our simulation is restricted to th
conventional regular solid solutions where there is no
volvement of disorder-order transition during precipitatio
This restriction may be released to some extent that ord
second phase is observable when the next-nea
neighboring interaction is considered. We will come ba
this point in Sec. V.

III. STATIC PROPERTIES OF COUPLING MODEL

In this part we study the static property of the lattic
referring to the Ising spin interaction coupled with the Po
spins, as defined in Eq.~1!. In more detail, we study depen
dence of the Ising criticality on the Potts-spin interacti
(Jmn , f mn , and domain sizeR!. We want to ensure that th
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dependence, if any, is not prominent, so that a conventio
MC approach of the Ising spin exchange for phase prec
tation can be employed. As well reported previously, it
more convenient to deal with the static property in a gra
canonical ensemble.34 There the chemical potential differ
encemA2mB is kept constant whilesC05NB /(NA1NB) is
permitted to fluctuate, so that any evolution of the structu
ordering parameter can be identified. This is different fro
the case in real alloys, whereC0 remains fixed.

It is obvious that the hybrid model Eq.~1! still shows
pairwise interaction as long asf mn (m,n5A,B) remain iden-
tical to each other. Therefore phase coexistence and I
criticality appear atmA5mB , predicting that the critical
point is located atC050.5. However, if one deals with do
main boundary segregation wheref BBÞ f AA , the critical
point may shift a little fromC050.5. Even so, a subcritica
behavior atC050.5 is still helpful for our understanding o
the problem. Our simulation is made aroundC050.5. The
MC procedure was proposed previously,34 a brief outline of
which is given below.

For given system parameters, an initial lattice configu
tion is chosen where the Ising spin for each site is impose
random, satisfyingC05constant. A multidomain configura
tion is folded onto the lattice by randomly imposing a ser
of circlelike domains until all lattice sites are occupied wi
Potts spins. The later-deposited domains may overlap
earlier ones, resulting in a distribution of the domain s
over a range centered atR. This initial lattice configuration
may be constructed via other ways, such as depositing
angle, square or hexagon domains, however, the dyna
feature shows no substantial difference. On simulation,
lattice sites are chosen one by one in regular fashion. W
a site is taken byA ~or B!, it is considered a replacement b
B ~or A!, respectively. However, such a replacement follo
a transition probability:

W5exp~2DH/kT!, ~4!

whereDH is the energy change of such a replacement, c
culated according to Eq.~1!. If W,1.0, a random numberR8
uniformly distributed between zero and one will be gen
ated and compared withW. The replacement will be ap
proved asR8,W and refused otherwise. This process is co
tinued until a given set of simulation circles is reached.

The order parameterc of the transition is defined as37

c5
1

L2 (̂
j &

~122Si !,

~5!

UL512
^c4&T

3^c2&T
2 ,

whereUL is the reduced fourth-order cumulant of the ord
parameter. It has the following properties:
1.0
TABLE I. System parameters for static property simulation.

C0 fAA fBB kT/f Jmn /f (m,n5A,B) L R fAA f BB

0.50 0.00 0.00 0.85–1.20 0.0–1.20 32–128 10 1.0 0.0 or
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H UL→2/3 as L→` for T,Tc

UL'0.62 at T5Tc

UL→0 as L→` for T.Tc

. ~6!

Basically, the position ofTc is determined by evaluating th
simulatedUL from lattices of various dimensionL and find-
ing their intersection position, as being plotted as a funct
of temperatureT scaled by factorf, becauseUL is indepen-
dent ofL at Tc .

The system parameters as chosen are listed in Table I
study the dependence ofTc on three parameters,Jmn , f mn
(m,n5A,B), andR, as defined in the Potts model. Note th
R510 is chosen here becauseL starting from 32 is taken and
L@R should be satisfied. Figure 1 shows the simulated
sults at f AA5 f BB51.0 where the cumulantUL is plotted
againstkT at variousJmn . Both kT andJmn are scaled with
f. At each case,UL grows gradually with decreasing tem

FIG. 1. Fourth-order cumulantUL as a function ofkT/f at
various lattice sizeL for systems of different Potts interactionJmn .
n

e

t

-

perature until a saturated value at lowkT. For a fixedJmn ,
UL;kT curves for the four values ofL roughly show a com-
mon intersection point„kTc ,UL(Tc)…. Note thatUL(Tc) de-
viates not far from 0.62 and the saturated value ofUL is
close to2

3 too. It is seen that the critical pointTc shifts a little
downward with increasingJmn . At Jmn50, kTc /f51.12,
quite close to 1.13, the critical point of the Ising model. A
Jmn /f50.90,kTc /f shifts to 1.02, not so much lower tha
the value atJmn50. It is then demonstrated thatTc is not so
much sensitive toJmn .

As f AA51.0 but f BB50.0, a downward shift ofTc with
increasingJmn is still observable. However, the shift is les
than the case off AA5 f BB51.0. The simulated data are give
in Fig. 2, wherekTc /f is plotted vsJmn /f. In fact, the shift
of Tc becomes less as eitherf AA or f BB is smaller. This
conclusion is quite understandable if one consults Eq.~3!
where the Potts part of the Hamiltonian takes its minimal a
maximal asf mn50.0 and 1.0, respectively. Regarding th
effect of domain sizeR on Tc , the simulated data show n
identifiable shift ofTc unlessR,4. As R,4, the DB’s oc-
cupy most of the lattice and significant fluctuations ofTc
shall be observed. It is then concluded that the hybrid mo
shows no essential difference in the static property from
pure Ising system unlessR is very small. The simulation
algorithm for the dynamic process can be the same as
conventional MC approach for the Ising system.

IV. DOMAIN BOUNDARY PRECIPITATION AND DOMAIN
GROWTH

Our simulation starts from an initially random configur
tion of the Ising spins~A andB! in lattice. The Potts spins ar
distributed over the lattice via the same way as describe
Sec. II. We chooseQ524,C050.10,L5256, and occasion-
ally 128. The parameters of interaction for two systems to

FIG. 2. Critical pointTc vs the Potts interaction factorJmn at
various values off mn .
TABLE II. The parameters of interaction for systems I and II.

System fAA /kTc fBB /kTc T/Tc Jmn /kTc (m,n5A,B) f AA f BB f AB

I 0.00 0.00 4.40–0.22 1.20 1.0 0.0 or 1.0 (f AA1 f BB)/2
II 1.20 1.20 4.40–0.22 1.20 1.0 0.0 or 1.0 (f AA1 f BB)/2
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PRB 60 7117MONTE CARLO SIMULATION OF SOLUTE . . .
simulated are listed in Table II, where in system I doma
growth is very slow and precipitation is dominant becau
Jmn@fmm. This property allows one to choose much larg
R than l c , characteristic scale of the precipitated structu
For system II, the Ising events and the Potts ones are ch
with comparable probability~due toJmn;fmm) so that do-
main boundary migration becomes quite high. In this ca
quite small initial domain size~e.g.,R510) is chosen, leav-
ing enough space for the rapid domain growth. For b
systems, strong segregation of soluteB onto DB’s is ex-
pected if f BB50, and no segregation is preferred iff BB
51.0, becausef AA51.0.

The MC algorithm and procedure of simulation were r
ported in our previous work,29 and therefore will be no
longer presented here. Note that the present algorithm
more efficient than the conventional Metropolis algorith
For each system, at least four runs of simulation start
from different seeds of random number generation have b
made and the average values of the simulated data are
sented here. Att50, the Ising spin for each site is chosen
random, whereas the domain sizeR ranges from 25–50 lat-
tice units, and sometimes, 9–10 units for system II. We w
first give a glance at the morphology of precipitates on DB
and then obtain a qualitative understanding of the influe
of temperature. The domain growth features will also be
scribed before a series of parameters are evaluated to c
acterize the precipitation at DB’s and domain growth.

A. Precipitation and morphology of precipitates

For comparison, we first present in Fig. 3 the snaps
pictures of DB’s configuration and solutes~B! at several
times for system I atT/Tc50.8 and f BB51.0, where no
boundary precipitation is expected. In Fig. 4 are given

FIG. 3. Snapshot pictures of DB’s configuration and solutes
system I atT/Tc50.8 andf BB51.0. The time scales are inserted
the figures.
e
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snapshot pictures at several times for the same system
f BB50.0. The solid circles represent DB’s and the op
circles represent solutes, leaving solventsA unlabeled.

From Fig. 3 it is clearly shown that in early stage@ t55
mcs~1 mcs represents a completedL3L circle!# the solutes
begin to aggregate into small clusters, i.e., formation of sm
precipitates. Either growth or coarsening of the larger p
cipitates in compensation with shrinking of the smaller on
or coalescence of the smaller precipitates into larger one
observed. The homogeneous phase precipitation1 is shown,
as predicted. Really, neither preference of precipitation
DB’s nor shape anisotropy of the precipitates is identifie
Nevertheless, it should be noted that hereT is not far from
Tc , and thus there exist a lot of monomers, dimers, trime
and so on, in addition to the precipitates.

As f BB50.0, as shown in Fig. 4, very different kineti
phenomena are observed. Taking effect immediately fr
the quenching, the solutes are observed to aggregate a
DB’s, producing high boundary precipitation tendenc
Many small precipitates inside domains are observed in e
stage (t550 mcs) in addition to those at DB’s. The precip
tates on DB’s grow rapidly and interconnect with each oth
to form stripelike pattern along the local DB’s. These strip

r

FIG. 4. Snapshot pictures of DB’s configuration and solutes
system I atT/Tc50.8 andf BB50.0. The time scales are inserted
the figures. The arrows indicate the boundaries that play as r
channels for diffusion.
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7118 PRB 60J.-M. LIU, L. C. LIM, AND Z. G. LIU
become thicker and thicker across the DB’s (t5300
;3400 mcs). Most of the small precipitates initially insid
domains shrink through monomer diffusion towards t
DB’s nearby them, although several of them occasiona
coarsen through absorbing solutes surrounding them.t
53400 mcs, it is rare to find precipitates inside the doma
other than some individual solutes. Strong domain bound
precipitation is demonstrated in the present system.

There are several features worthy of mention for
boundary precipitation. First, the precipitates on DB’s ha
stripelike shape. The shape of a local precipitate is co
pletely determined by the local boundary shape. Second
precipitate distribution on DB’s is nonuniform. Some boun
aries are completely occupied with precipitates whereas
others are less or nearly free of the solutes. This pictur
easily understood because excess boundary energy is as
ated with the Potts-spin difference between adjunctive
domains. The boundaries with higher energy prefer the
ute occupation. Third, it is recorded that DB’s really play
a rapid channel for diffusion, although a quantitative char
terization of such a sequence is still unavailable to the
thors. As indicated by arrows in Fig. 4, the local boundar
attract the surrounding solutes and then transfer them to
neighboring boundaries where the higher energy is posse
and thus solutes become concentrated. Although the func
of the local boundary as channel of diffusion depends m
or less on the boundary property itself, those boundaries w
moderate Potts-spin interaction play the best as the chan
In fact, in our simulation it is recorded that the average ro
square shifting distance for each Ising spin at DB’s is mu
larger than that for Ising spin far from DB’s. In qualitativ
one understands that the solutes to be trapped by the DB
very high excess energy cannot shift away anymore as
as they are trapped. These DB’s then become drains of
utes instead of channels of diffusion. The DB’s of very lo
excess energy have little chance to collect solutes surro
ing them. Nevertheless, those DB’s of moderate excess
ergy can collect as many solutes around them as possibl
one hand, on the other hand they transfer at a high proba
ity the trapped solutes toward the neighboring DB’s of hi
excess energy, resulting in rapid diffusion of solutes alo
these DB’s.

B. Features of domain growth

In parallel to the boundary precipitation or aggregatio
domain growth through boundary migration is also clea
identified in Fig. 4, althoughR is quite big. The domain
growth looks to be isotropic and the domains are equia
because we impose a high value ofQ (Q524). The growth
of larger domains in concert with shrinking of smaller on
is still observable in spite of slow boundary migration. D
main coalescence events are also occasionally identi
Four-domain junctions created through shrinking of t
smaller domains become unstable and each finally splits
two trijunctions. The normal domain growth i
displayed.24–26

However, a comparison of Fig. 4 with Fig. 3 shows se
ous pinning of DB’s by the precipitates. When all boundar
in Fig. 3 change their locations from time to time, the high
solute-trapped boundaries shown in Fig. 4 do not cha
y
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their locations too much. This effect becomes even mo
considerable as the boundary migration ability is high, to
shown later.

C. Influence of temperature

We look at the effect of temperature on the morpholo
and kinetics of precipitates. In Figs. 5~a!–~d! two examples
are given. In the top row are separately shown the confi
ration pictures forT/Tc52.4 and f BB50 ~a! and f BB51.0
~b!. Note here that the system is in fact undersaturated si
T.Tc . No aggregation of solutes is observed in Fig. 5~b!.
However, one identifies intensive solute segregation on D
in Fig. 5~a!, although the segregated clusters are dilute
stead of compact. The thickness and length of the prec
tates are much smaller than those shown in Fig. 4.

The more interesting point refers to the bottom row
Fig. 5, where the configurations at lowT (T/Tc50.32) are
presented respectively forf BB50 ~c! and f BB51.0 ~d!. Dis-
tinctive and large precipitates are formed at the early stage
we would not have mapped the DB’s, the lattice looks to
experiencing homogeneous precipitation at high supersat
tion. Nevertheless, a careful identification reveals that ma
precipitates still prefer to stick on DB’s asf BB50.0 @Fig.
5~c!#. The shape of precipitates on DB’s is more or le
equiaxed instead of stripelike pattern. However, the num
density of the precipitate inside domains atf BB50.0 is lower
than that atf BB51.0. This indicates that the boundary pre
cipitation is no longer as remarkable as highT, although it is
still preferred. It is thus demonstrated that the boundary p
cipitation features are very temperature dependent.

FIG. 5. Snapshot pictures of DB’s configuration and solutes
system I atT/Tc52.5 asf BB50.0 ~a! and f BB51.0 ~b!, andT/Tc

50.42 asf BB50.0 ~c! and f BB51.0 ~d!. The time scales are in-
serted in the figures.
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D. Features in the case of rapid boundary migration

Before evaluating quantitatively a series of parameters
us look at what happens as DB’s have high migration abi
~i.e., system II!. Figure 6 presents the snapshot pictures
DB’s and solutes at several times forT/Tc50.8 and f BB
50.0. The boundary precipitation shows similar features
in system I, while here the domain growth becomes v
fast. Nevertheless, system II has less remarkable boun
precipitation than system I. Due to the fast boundary mig
tion, more precipitates are found inside domains beca
then can not catch up with the DB’s at which they trapp
earlier.

In addition, the pinning effect of DB’s by the precipitate
remains remarkable. The solute-concentrated bounda
hold unmoved with time. This effect, on the other han
makes those solute-free boundaries highly rippled due to
fast motion. Regarding the effect ofT, no significant differ-
ence is observed referred to systems II and I.

E. Occupation factor at DB’s

In order to characterize the kinetics of the boundary p
cipitation and domain growth, we evaluate several para

FIG. 6. Snapshot pictures of DB’s configuration and solutes
system II atT/Tc50.8 andf BB50.0. The time scales are inserted
the figures.
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eters of the microstructure as a function of time and sys
parameters. First, we define an occupation factor of the
utes at DB’s,G. It scales the number fraction of all doma
boundary sites that are occupied with the solutes. T
writes:

G5~CDB2C0!/CDB , ~7!

whereCDB represents the domain boundary sites occupied
the solutes normalized by all domain boundary sites. Ob
ously, G50 if solutes have no preference to aggregate
DB’s since CDB'C0 ; G512C0 if all domain boundary
sites are occupied with solutes due toCDB51; and 0,G
,12C0 otherwise.

In Fig. 7 are plotted against time the average energy
interaction per site,̂ E&52H/L2, and G for T/Tc50.8 at
f BB50.0 ~solid line! and 1.0~dashed line!. It is shown that
for both caseŝE& grows gradually and becomes slow at t
late stage. Not onlŷE&, but also the Potts interaction energ
at DB’s, can be fitted well witĥE&;exp(2n/t) wheren is a
constant. That higher̂E& at f BB50.0 than atf BB51.0 indi-
cates that boundary precipitation rather than homogene
precipitation is preferred thermodynamically.G fluctuates
aroundG50 asf BB51.0, but grows rapidly up to 0.70 in th
early stage asf BB50.0. Afterwards it tends to be saturated
G50.75. This tendency is consistent with the observation
Fig. 4. Note here thatG50.75 is already not far from the
maximumG50.90 ~sinceC050.1).

As f BB50.0, the simulatedG at t51000 mcs for different
values ofT/Tc are given in Fig. 8. Strong temperature d

r

FIG. 7. ^E& ~a! andG ~b! as a function oft for system I asf BB

51.0 andf BB50.0; T/Tc50.80.
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pendence ofG is demonstrated. Interestingly, over the sim
lated range of temperature,G exhibits a single-peaked pa
tern. The peak position is located atT/Tc;0.8 for both
systems. On one side whereT.Tc , solute aggregation on
DB’s is not serious, e.g.,G50.57 ~I! and 0.43~II ! at T/Tc
52.5. On the other side, however,G is down to 0.45 at
T/Tc50.32. This corresponds to the case as shown in
5~c!. The peak height ofG(T/Tc) for system II is a little
lower than that for system I, indicating that a high mobili
of DB’s weakens the tendency of the boundary precipitati

Figure 8 discloses a fact that strong domain bound
aggregation may only be achieved within a limited range
T/Tc . At either very low or very high temperature, wea
solute aggregation on DB’s and then a quasihomogene
precipitation is expected.17 We therefore argue that the max
mal boundary precipitation tendency can be achieved onl
a moderate supersaturation withT not far belowTc . In fact,
this has been a well-known experimental phenomenon.13

To understand this phenomenon, we come to our mo
Eq. ~1!. As T@Tc , the thermal activation becomes very pr
nounced and any spin-aggregation event whose probabili
determined by;exp(2DH/kT), whereDH is the energy dif-
ference after and before the event, will not be preferred v
much due to largekT. Therefore precipitation either at DB’
or inside domains is not favorable at high temperature.
the other hand, asT!Tc , i.e., at deep supersaturation, th
solutes either nearby DB’s or inside domains show v
strong tendency of precipitation. They aggregate toge
very rapidly into stable precipitates. Note that only is co
sidered the nearest-neighboring event~either Ising or Potts!
in our model. Any solute desorption from existing precip
tates is strongly unfavorable sinceDH/kT@0, unless the sol-
ute has its destination at DB’s after one-step spin excha
It is thus very hard for those solutes on the surface of ex
ing precipitates that are at least two to three lattice units fr
any boundary site~s! to evaporate away. Therefore all pr
cipitates inside domains remain quite stable against coar
ing or segregation onto DB’s.

F. Kinetics of precipitate growth and coarsening

We study the kinetics of growth and coarsening of t
precipitates when the boundary precipitation is preferr
The spatial correlation function of the solutes in lattice c
be defined as3

FIG. 8. G (t51000 mcs) as a function ofT/Tc for systems I and
II as f BB50.0.
-
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g~x,y,t !5
1

L3L

3 (
m,n

L3L

„G~m,n,t !2C0…•„G~m1x,n1y,t !2C0…,

~8!

whereG(m,n,t)50 if site ~m,n! is occupied by spinA, oth-
erwiseG(m,n,t)51; x andy are the coordinates along thex
axis andy axis, respectively. From Eq.~8!, we can also de-
fine the axially oriented and radially averaged correlat
functions:

g~x!5g~x,0,t !,

g~y!5g~0,y,t !, ~9!

g~r !5
1

M (
ur u<r ,ur u1 i

g~x,y,t !, r5 ix1 jy,

where M is the number ofg(x,y,t) which satisfiesur u<r
,ur u11 overall the lattice sites andg(r ) represent the radia
average ofg(x,y,t). Considering the fact that no conside
able anisotropy of the precipitate distribution appears,
only present our analysis ofg(r ) below.

g(r ) oscillates around ther axis. The wavelengthl c scales
the average size of the precipitates and it is comparabl
the interprecipitate spacing. Therefore time evolution ofl c
characterizes growth and coarsening of the precipitates
Fig. 9 are plottedl c(t) for system I at bothf BB51.0 and 0.0.
As f BB50.0 l c achieves rapid growth over the simulate
period, referring to the case off BB51.0. Especially atT/Tc
50.8, l c for f BB50.0 is three times that forf BB51.0 ast
53400 mcs. Furthermore, different kinetic behaviors ofl c
for f BB50.0 and 1.0 is identified. Forf BB51.0, the growth
shows continuously decelerating, whereas a roughly lin
growth of l c is observed in case off BB50.0.

Regarding the effect of temperature on the kinetics, o
presents the simulated data ofl c at different T/Tc as f BB
50.0 in Figs. 10~a! and~b! for systems I and II, respectively
Note here once more that there is no precipitate observe

FIG. 9. l c as a function oft for system I atT/Tc50.80 asf BB

51.0 and 0.0, respectively.
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T/Tc.1 as f BB50, however, domain boundary segregati
yields. g(r ) still produces an oscillation. The data ofl c(t)
thus evaluated are presented in Fig. 10 for comparison.
seen strong dependence ofl c(t) on T/Tc . At similar time
scale,l c shows growth with decreasing ofT at T.Tc , then
decays with decreasing ofT at T,Tc . The peak ofl c(T) is
again roughly located atT/Tc50.8. It is easily understood
that this dependence is attributed to the same reason
determinesG(T), as just discussed in the previous sectio
Let us see againl (t) at variousT/Tc for both systems I and
II, a roughly linear relation is established at higherT/Tc ,
whereas a negative deviation from the linearity is obser
as T/Tc is quite low. This deviation is more remarkable
system II than in system I. As is well known, the LSW law
usually used to characterize the kinetics of precipitate co
ening in alloys, the present simulation provides us an opp
tunity to check this law in case of domain boundary seg
gation. More details are presented in Sec. III H.

G. Kinetics of domain growth

In this section the kinetics of domain growth is emph
sized. The aim is to check the normal linear law for dom
growth as domain boundary segregation features are con
ered. We apply the random sampling technique to evalu
the domain area distributionf (A,t) and define the averag
domain areâA& as23

^A&5(
i

A• f ~A,t !Y (
i

f ~A,t !. ~10!

Although the sampling per lattice fluctuates due to limit
size (L5256), an averaging processing on more than

FIG. 10. l c as a function oft at variousT/Tc as f BB50.0, for
system I~a! and system II~b!, respectively.
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samplings gives quite good data. The evaluated data of^A& as
a function oft for system I atT/Tc50.8 are presented in Fig
11. ^A& at f BB50.0 is smaller than that atf BB51.0. This
difference becomes even more remarkable toward the
stage. It allows one to argue that domain growth is hinde
by precipitates at DB’s. For system II, similar results a
revealed. Furthermore,^A& exhibits a roughly linear depen
dence oft at f BB51.0, whereas this dependence becom
much weaker atf BB50.0. This fact predicts that the kinetic
of domain growth deviates from the normal kinetic law
the domain boundary precipitation is favored.

This time dependency of̂A& for systems I and II atf BB
50.0 under differentT/Tc are given in Fig. 12. At a similar
time scale,^A& for system II is much higher than that fo
system I. The reason is quite obvious. It is also observed
^A& decreases asT/Tc decreases, because the mobility of t
precipitates is lowered at lowT. This effect pins DB’s from
moving and then hinders growth of the domains.

H. Broken LSW law and growth exponent

As we mentioned above, the precipitate coarsening sh
quite different kinetic behavior, depending on whether stro
domain boundary segregation is preferred or not. Thus th
is a need to recheck the applicability of the LSW law a
related growth exponent. As is well known, coarsening
multiprecipitated microstructure controlled uniquely by so
ute diffusion follows the LSW law, owing to the potentia
difference in precipitate/matrix interface between two neig
boring precipitates of different size.38,39 Suppose that tota
volume of precipitates is constant and low, and the size
tribution of precipitates isp( l ,t); we can write following
continuum equation to be satisfied during the coarsening8,9

]p

]t
1

]

] l Fp
] l

]t G50. ~11a!

FIG. 11. ^A& as a function oft for system I atT/Tc50.80 as
f BB51.0 and 0.0, respectively.
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Toward the late stage of coarsening, distributionp( l ,t) re-
mains stationary although its position shifts toward the la
size side. This means that there exists an average precip
size l c satisfying the following equation:38

dlc
dt

5r1

D•sAB

T
•

1

l c
2 , ~11b!

where r l is a positive constant,D is the solute diffusion
coefficient, andsAB is the interface energy between the pr
cipitate and matrix~i.e., B cluster andA matrix!. Equation
~11b! yields

l c~ t !32 l c~ t50!35~3r1•D•sAB /T!•t5K•t, ~12a!

whereK is a positive constant. Equation~12a! is the well-
known LSW law. Asl c(t50)50, Eq.~12a! yields the well-
known power law with growth exponentg5 1

3 .

l c5A3 r1•D•sAB /T•tg}tg. ~12b!

In our hybrid model, the precipitate coarsening atf BB
51.0 is nearly pure-diffusion controlled. The evaluatedl c(t)
indeed follows the1

3 power law, as shown in Fig. 9. A
f BB50.0, considerable domain boundary aggregation is
served, indicating existence of a strong attractive poten

FIG. 12. ^A& as a function oft at variousT/Tc as f BB50.0, for
system I~a! and system II~b!, respectively.
e
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-
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between precipitates and DB’s. Equation~11b! should in-
clude this additional attractive term. A reasonable appro
to the problem starts from adding a new term to the rig
hand side of Eq.~11b!:

dlc
dt

5r1

D•sAB

T• l c
2 1r2

D•VDB

T•R
, ~13!

wherer2 is a positive constant on the same order of mag
tude asr1 (r1;r2), VDB is the potential difference betwee
two precipitate inside domains and at DB’s, respective
separated by;R. This term reflects the attractive interactio
between DB’s and precipitates inside domains.VDB /R
should have the same unit assAB . As the zero-order ap-
proximation, for example,sAB andVDB may easily be writ-
ten as2

sAB;2
1

4
fAB;kTc/4,

VDB /R;4JBB~12 f BB!;5kTc~12 f BB!.

Clearly, one hasVDB /R@sAB as f BB is zero. On the other
hand, domain growth is a slow sequence with respect to
cipitation, i.e.,dlc /dt@dR/dt. ThereforeR can be approxi-
mately viewed as a constant in Eq.~13!. The solution to Eq.
~13! reads ifl c(t50)50 and constantsr1;r2;1:

l c5AsABR

VDB
tg21S l cA VDB

sABRD 1
D•VDB

T•R
t. ~14a!

As mentioned above, ifVDB /R@sAB is satisfied andl c is
not very small, one has as the zero-order approximation

l c;
D•VDB

T•R
t. ~14b!

This equation may not be a quantitatively acceptable exp
sion of the coarsening phenomenon, but shows the influe
of DB’s in a qualitative way. The growth exponentg51 for
the precipitate coarsening is established in case of ser
domain boundary segregation, well consistent with our sim
lated data shown in Figs. 9 and 10. Furthermore, it is s
from Eq. ~14! that l c grows at a lower rate asT is lower
because termD/T is a decaying function ofT, and a large
domain size corresponds to a slow growth ofl c . As R is
quite large, Eq.~14b! may be no longer a good approxima
tion of Eq.~14a!. A negative deviation of Eq.~14a! from the
linearity is expected. We then have 1/3,g,1. All of these
predictions are well confirmed with our data shown in Fig
10~a! and ~b! ~see our analysis in Sec. III F!.

For a better understanding of growth exponentg, one uses
Eq. ~12b! to fit the simulated data and the evaluatedg as a
function of T/Tc is plotted in Fig. 13~a!. It is seen that for
both systemsg50.3360.04 at f BB51.0, independent of
T/Tc . Very good consistency of the simulated data with t
LSW law is indicated. However, atf BB50.0, g no longer
keeps unchanged but shows a value much larger than
LSW exponent 0.33. It increases first and then decrea
with decreasing ofT/Tc . The maximal, very close to 1, is
reached atT/Tc50.8. Nevertheless, note here that at lo
temperature (T/Tc,0.4) g reapproaches the LSW exponen
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The reason is that the second term on the right-hand sid
Eq. ~14a! decays very rapidly with decreasing ofT. The first
term on the right-hand side of Eq.~14a! becomes relatively
important at lowT, thus resulting ing recovering back to the
LSW exponent. In fact, to date most of the evidences fr
experiments and simulations refer to the cases of deep su
saturation, so that the LSW law has achieved widespr
support. We therefore conclude that the coarsening of
precipitate depends on the domain boundary segregation
havior and the LSW law becomes no longer applicable
the case of favored boundary segregation.

I. Broken linear law and exponent of domain growth

Now we come to check the linear law for domain grow
sequence. The domain growth is solely driven by the exc
energy associated with DB’s. For normal domain growth
is assumed that the domain size follows a monodispe
distribution, therefore the property of average domain a
^A&;R2 uniquely characterizes the behavior of doma
growth. The kinetics can be described by24–26

dR

dt
5wS DDB

T D SDB

R
, ~15a!

wherew is a positive constant,DDB is the coefficient scaling
the mobility of DB’s, andSDB is the domain boundary en
ergy. The latter can be roughly treated as a time-indepen
quantity. One thus has the well-known linear law

^A&5^A&012w~DDB /T!SDB•t, ~15b!

FIG. 13. Growth exponentg for precipitate coarsening~a! and
the exponenth for the domain growth at variousT/Tc as f BB

51.0 and 0.0, for systems I and II.
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where^A&0 is ^A& at t50. A growth exponenth51 is then
defined and well confirmed by real and computer expe
ments. Our simulated data of^A& as a function oft, as shown
in Fig. 11 at f BB51.0 where normal domain growth is ex
pected, support this linear law. However, Eq.~15b! is no
longer true when domain boundary segregation is favo
( f BB!1), becauseSDB here is no longer time independe
but decays with sinking of solutes onto DB’s. Because o
simulation reveals thatHP in Eq. ~1! decreases exponentiall
with time, simply, one can rewrite Eq.~15a! as

dR

dt
5wS DDB

T D SDB@12exp~2t/t !#

R
~16a!

with t the characteristic time. Apart from the early stage
domain growth (t@t), one obtains an approximate solutio
to Eq. ~16a!:

^A&5^A&012w~DDB /T!SDB•t ln~ t !. ~16b!

Therefore a negative deviation of^A& from the normal linear
law is predicted, confirmed with our simulated data shown
Figs. 11 and 12 atf BB50.0. Regarding the effect ofT, one
understands that (DDB /T) decays rapidly withT so that^A&
shows slower growth at lowerT, no matter whatf BB takes.
The data evaluated at variousT/Tc at f BB50.0 for both sys-
tems I and II qualitatively support Eq.~16!, as shown in Fig.
12.

Nevertheless, people are used to applying a power la

^A&5^A&01b•th, b.0 ~17!

with growth exponenth to fit the domain growth data. In
fact, Eq.~16b! may not be a quantitative acceptable law d
to a series of approximations made. We prefer to apply
~17! to evaluate the value ofh, rather than using Eq.~16b!.
The results are shown in Fig. 13~b!. At f BB51.0, the simu-
lated data for both systems fluctuate aroundh50.95, inde-
pendent ofT. The normal kinetics of domain growth is dem
onstrated. When the boundary segregation is favored,
data are much lower than the normal valueh51.0. The dif-
ference reaches the maximum atT/Tc50.6– 0.42, where the
simulated valueh50.4060.05. As expected, the simulate
h at very low T (T/Tc50.23) recovers up to 0.73, not fa
from the normal value. Therefore we are allowed to conclu
that the normal law of domain growth is broken and
longer applicable as long as the domain boundary segr
tion is strongly favored.

J. Scaling of precipitated microstructure and domain size

Finally, we come to check the scaling state of both t
precipitated microstructure and the domain growth. The s
ing of the precipitated microstructure reflects a station
state achieved in lattice with respect to the unique charac
istic lengthl c . In the diffusion-limited aggregation, all of th
correlation properties of the microstructure should hold s
tionary after rescaled withl c , leaving l c to grow according
to some power law.1,3 However, in case of the strong bound
ary segregation,l c is not only determined by the diffusion
but also dependent of DB’s, so that the scaling state may
longer be reached.
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In Fig. 14 are showng(r ) at several times for systemI as
T/Tc50.8 andf BB50.0. The curves are rescaled by the fi
crossing pointl 0 at whichg( l 0)50, so they may fall onto the
same curve if the scaling state would have been reac
Anyway, these data points look to be still far from fallin
onto one specific curve. This allows us to conclude that
scaling relation is satisfied with the microstructure, at le
until the longest time we reached,t53400 mcs~this time
scale equals to 104 mcs in the conventional Metropolis algo
rithm!. It provides us the first evidence that the scaling l
for homogeneous second phase precipitation may no lo
be applicable when domain boundary segregation is stro
favored. It should be mentioned that as evaluating the da
low T, we do observe that the system approaches the sca
state but never reaches it at the longest time scale reach

On the other hand, it was revealed earlier that the dom
shape and topological relations at DB’s do not change
markably during domain growth. Although the kinetic exp
nent shows serious deviation from the normal value, it
surprising that the scaling for domain growth still holds. T
data of scaling processing are presented in Figs. 15~a! and
~b! for system II where domain growth is developed ov
large spatial scale. It is clearly shown that for each case
data aftert>900 mcs fall onto one specific curveF(A/^A&)
within the statistical uncertainty, demonstrating the scal
property of domain growth even when domain boundary s
regation and precipitation are strongly favored. The sa
conclusion works for system I too.

Nevertheless, what should be pointed out here is that
scaling for domain growth may still require rechecking a
much large spatial scale. The lattice size employed in pre
work may be large enough for simulation of precipitat
microstructure, but not large enough for domain grow
simulation. Furthermore, the domain size that can be
scribed by this hybrid model is small and the number
domains involved for statistics in the late stage is n
enough. In fact, if one replotsF(A/^A&) just over a small
A/^A& range, says from 0–2.5, the curves at various tim
still show some differences to each other. Therefore the c
clusion on the domain growth scaling may not be convinc
before a much larger scale simulation is carried out~for ex-
ample,L.1024). We just show that the present data lo

FIG. 14. Invalid scaling processing of correlation functio
g(r ,t) at various times asT/Tc50.80 andf BB51.0 for system I.
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supportive of the conclusion that the scaling holds for
domain growth even in the case of strong boundary segre
tion.

K. Remarks

A number of interesting features associated with sec
phase precipitation and domain growth are basically att
uted to the coupling between the Ising model and Po
model. What should be pointed out here is that the Ising s
states are conserved whereas the Potts-spin states are
The conservation of the Ising spins limits coarsening of
precipitated microstructure so that a power law of1

3 is
achieved. The growth exponent for domain growth becom
1
2 ~taking the linear dimensionR;th, we haveh5 1

2 ) due to
the nonconservation of the Potts spins. A coupling of the t
types of spin states produces a balancing point between1

3 and
1
2.

The reason that favors the scaling property of dom
growth is the highQ states chosen for constructing the Po
lattice, which results in a roughly isotropic boundary co
figuration even after a long period of growth.

V. SOME RELEVANCES TO REAL ALLOY SYSTEMS

We have presented in detail our simulated results and
vealed a series of interesting phenomena in the binary
tems where both domain boundary precipitation and dom
growth proceed in parallel. Especially, we have demo

FIG. 15. Scaling of the domain area distributions at vario
times asf BB50.0 for system II.
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strated that the LSW law and scaling property of the ph
precipitation are broken when the boundary segregatio
preferred. For domain growth, an abnormal kinetics has b
revealed although the scaling property may still hold. J
viewing from the kinetics of either phase precipitation
domain growth, the precipitate coarsening is accelera
whiles the domain growth is decelerated. Nevertheless,
alloy systems may not perform as simply as we have sho
above. Many kinetic and structural features associated w
precipitation and boundary segregation in polycrystall
materials cannot be imaged by our approach Eq.~1!. For
example, real alloys decompose via the spin-vacancy
change mechanism instead of spin-spin exchange. In a n
ber of cases, the precipitate phase is structurally orde
compound. Formation of the new second phase accompa
the generation of long-range stress field. It is impossible
approach all of these features and very hard to deal w
them in a preliminary sense. However, considering the
that our hybrid model is intrinsically of short range, it is st
helpful to give a preliminary discussion on effect of vaca
cies and kinetics of second-ordered compound in the fra
work of Eq. ~1!. A detailed simulation of them is left fo
future work.

A. Spin-vacancy exchange mechanism

An alloy contains a number of vacancies, third specieV
besides speciesA and B. The spin-vacancy exchange is
realistic mechanism for species diffusion. An acceptable
sumption is that there is no interaction between vacan
and species, whether the Ising-type or Potts-type. There
Eq. ~1! still remains applicable for theA-B-V system.34

However, the MC algorithm and procedure for the Ising
quence have to be modified, whereas the algorithm and
cedure for domain growth remain unchanged because
Potts event does not need spin exchange. For the Ising
quence, a site is chosen only if it is occupied by a vacanc
it has neighboring vacancy. If a vacant site is chosen, i
permitted to do exchange with any of its four neighbors. T
site must do exchange with its vacant neighbor if it is tak
by A or B. A spin-vacancy exchanging event is approved
the same probability criterion.

This modified approach was used to simulate homo
neous second phase precipitation in single-crystal
solution.34 Basically, there is no difference in the microstru
tural and dynamic features between the spin-spin excha
mechanism and the spin-vacancy exchange one. The va
cies have no tendency of aggregation but simply distribut
random in lattice. However, in our hybrid model the vaca
cies inside domains will be attracted toward DB’s to co
sume part of the excess energy there. This sequence is
cially preferred atf BB51.0 rather thanf BB50.0. It is easily
understood that they will not self-aggregate but just distr
ute randomly along DB’s.

What should be pointed out here is thatfAA5fBB50 is
assumed in our model. It means that the like-spin pairs h
no interaction, the same as the species-vacancy pairs.
choice avoids any precipitation tendency of vacancies th
selves, but is less relevant for real alloys because vaca
segregation at the interfacial layer ofA phase andB phase
and DB’s as well is observed in real alloys.40,41It is therefore
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necessary to take positivefAA and fBB and keepf un-
changed for our simulation. In this case, vacancy aggrega
at theA/B phase interface was confirmed.42 For the present
hybrid model, vacancies may aggregate atA/B phase inter-
face or DB’s, depending on a competition ofHI andHP via
the aggregation.

B. Precipitation of ordered compound

Equation~1! may also be used to describe precipitation
orderedA-B compound in the multidomained lattice. Strict
speaking, a correct description of precipitation of stoich
metric orderedAB compound requires inclusion of the nex
nearest-neighboring Ising interaction between speciesA and
B.43 Therefore Eq.~1! has to be modified for such a descri
tion. Suppose that the second phase is anABAB-type ordered
compound, there will appear a number of smallABABorder-
ing domains~OD’s! in lattice until the Ising-spin balance i
reached, following by coarsening of the larger OD’s in co
cert with shrinking of the smaller ones. Note here th
growth of the OD’s may not require long-range diffusion
species, the kinetics of the ordering-domain growth obey1

2

power law44 instead of the LSW law for pure second pha
coarsening.

Regarding the interaction of DB’s and OD’s, atf BB
51.0 one may not be able to observe any interaction
tween them. However, whenf BB,1.0 or 0.0, segregation o
the solutes at DB’s may be observable. In such a case,
Ising-spin conservation introduces repulsive force betw
DB’s and OD’s. This implies that the formed OD’s have
tendency of keeping away from the DB’s nearby. Doma
boundary segregation will hinder coarsening of the OD’s
though the OD’s far from DB’s may coarsen via the norm
mechanisms. This problem remains of special interest an
worthy of detailed study.

VI. CONCLUSION

In conclusion, we have studied by means of MC meth
the static properties of the Ising-Potts hybrid model propo
earlier, referring to phase separation and domain growth
binary alloys. It has been demonstrated that a coupling of
Ising lattice with the Potts spins shifts the Ising critical po
toward a lower temperature. This effect is, however, qu
weak, especially in the case of the strong domain bound
segregation expected. The domain boundary precipita
and domain growth as parallel processes in binary alloys
simulated in detail. We have revealed significant bound
precipitating phenomena at a temperature just below
critical point for the alloys where the solutes prefer on
domain boundaries. At either high or low temperature,
tendency of boundary precipitation is considerably we
ened. The strong temperature dependence of the morpho
and size of the second phase, including those precipitatin
domain boundaries, is established. Typically stripel
boundary precipitates are observed. Due to the favo
boundary precipitation, the coarsening of the second phas
remarkably accelerated. No matter what the migration abi
of domain boundaries, the domain growth is seriously pinn
by the boundary precipitates, although the domain patt
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and dynamic property of the boundary migration remain n
mal. Both the Lifshitz-Slyozov-Wagner law for the precip
tate coarsening and the linear law for the domain growth
found to break due to the boundary precipitation pheno
enon. When the scaling state for the precipitated microstr
ture can never be reached, the scaling property of the dom
growth may still hold in spite of further confirmation re
quired. We have also discussed the possibility of apply
the present model to some problems relevant to real a
o

.
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systems, indicating a number of interesting effects to be
plored.
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