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Domain boundary precipitation and domain growth in binary polycrystalline materials are studied by apply-
ing the Monte Carlo simulation in two-dimensional squared lattice. The simulation is carried out on a hybrid
lattice of the kinetic spin-exchange Ising model coupled with @hstate Potts model. First of all, the static
properties of this coupled model are studied, predicting just a small shiftdown of the critical point with
enhanced Potts interactions. Subsequently, the dynamic properties, such as morphology and coarsening kinet-
ics of the second phase precipitates as well as kinetics and scaling of the domain growth, are investigated in
detail. Pronounced second phase precipitation at domain boundaries is observed at a temperature range just
below critical pointT, as long as the solutes prefer to segregate onto the boundaries. However, the boundary
precipitation is significantly prohibited at either high or low temperatufies T, or T<T,). We demonstrate
that the domain growth is slowed down due to the pinning effect of the precipitates at the boundaries, no matter
what the boundary migration ability is. The kinetics of boundary precipitation and domain growth in various
systems are simulated. Both the Lifshitz-Slyozov-Wagner law for second phase coarsening and the linear law
for the normal domain growth become broken due to the domain boundary precipitation. The scaling behavior
of the domain growth is identified in present systems although a further confirmation may be required.
[S0163-18209)00434-9

I. INTRODUCTION The real materials may not be always homogeneous,
where various types of defects like vacancies, dislocations,
When a solid solution is submitted into the two-phasedomain boundarieDB'’s) and so on, are involved. The pref-
coexisting range of the temperature-composition diagram, arable precipitation of the second phase around these defects
second phase precipitates from the matrix of the parenias observed a long time agdIn particular, vacancies are
phase. This problem represents one of the fundamental fieldgelpful for phase precipitation. Due to structural difference,
in condensed matters and materials science. For a homoggre new phase may introduce elastic strain, which modulates
neous system, the early stage of precipitation may be identihe morphology and changes the kinetics of precipitatfon.
fied as either nucleation, consequent growth and coarsening thjs case, controversial results on the late stage kinetics of
of the second phase, or spinodal 'd.ecomlpc‘)lsmon, depend'r&ecipitation were reported~215Furthermore, most mate-
on temperaturd and alloy compositiorC,. " Much effort a5 nder service are polycrystalline so that the domain

in developm_ent of microscopic techniques has been mad_e .'@rain) boundaries must be consider€dn fact, the materi-
last decade in order to study the very early stage of precipi: '

tation, although the short time and nanospatial scales make?tls. property depends e_sser_mally on domain size, Wh'l_e do-
: main boundary segregation is a common phenomenon in ma-
a big challenge to the research&rfdUp to date, the theoret- . gt
ical scheme of phase precipitation may not be so optimisticterials processing’™*' This allows one to argue that the real
there still remain some uncertainties due to the great conkinetics of second phase precipitation may be very different
plexity of the problent** Nevertheless, toward the late from the homogeneous phase transformations.
stage the physical picture becomes simple. The two-phase On the other hand, domain growth represents a common
microstructure can be characterized with the spatial correlahaterials process. Growth of the larger domains in concert
tion function g(r,t), which exhibits unique characteristic With shrinking of the smaller ones is driven by the excess
length and follows the scaling conceépf. The characteristic free energy associated with the DB%?® For two-
length |, evolves according to the well-known Lifshitz- dimensional lattice, it is well understood that apart from the
Slyozov-WagnerLSW) law.®®° This law has recently been very early stage, the average domain size follows the well-
demonstrated even for the highly concentrated alloys as longnown kinetics of( A)~t, where(A) is the average domain
as the system is of short-range interaction, noting that severalrea and is time. The normalized domain size distribution
other laws were proposed previoudfy!? keeps stationary with time, i.e., the so-called scaling
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state>*~**However, a new complexity appears as the domairtotal spin numberN=N,+Ng. In our model, only the
growth is coupled with additional processes, for examplenearest-neighboring part of the spin-interaction is accounted
when domain boundary segregation or precipitation occurs ifor. What we should point out here is that the diffusion in
parallel’” The domain growth is then expected to be pinnedreal alloys performs via the spin-vacancy exchangestead

by segregated solutes or precipitates at DB’s. The boundanyf the direct spin-exchange mechanism assumed here. We
property will be significantly modified too. These problemsshall come back to this argument in Sec. V A. On the other
have been of special interest to physicists and materials rédvand, the domain degeneracy of the lattice is expresseg by
searchers. For example, Fan and co-woKefinvestigated  spins in theQ-state Potts model and upon each site is im-
the diffusion controlled domain growth with second phaseposed one of th€ multispin states. The Potts spin of a site
precipitates trapped at DB'’s. A series of new effects are prerepresents its lattice orientation. A closed lattice area of iden-
dicted from their phase-field theory that is critical to our tical spin represents one domain. If two nearest-neighboring
understanding of the coupling phenomena during microstrucsites have different spin states, it means that they are on the
tural evolution of mu|tiphased materials. DB’s. The high-energy state of domain boundary sites acts

In a previous papé? we developed a Monte Carl®1C) as the driving force for boundary migration and then domain
approach of a hybrid model in which the kinetic spin- growth. We assume that the Ising interaction between two

exchange Ising mod®3! and theQ-state Potts mod# are neighboring sites has nothing to do with their Potts spins,

combined in order to study the solute segregation phenonY—VhEther they are identical or different. This means that the

enon at DB’s. The domain boundary segregation in binar))smg interaction bt'etween.two ngarest—neighboring si'tes is in-
multidomained alloys was simulated in detail. This approactflePendent of their location, either on DB's or inside one
can be directly extended to simulate phase precipitatioflomain. The Hamiltonian of the present systet,can be
problems in such a system. Furthermore, a study of the statiritten as follows, a detailed derivation of which refers to
properties of such a hybrid model is essential too. In particu®U’ Previous papet.

lar, the critical pointT. of the system where highly degen- H—H +H

erated stateg¢Potts spins are introduced may be different e
from the pure Ising system conventionally applied to ap-
proach phase precipitation. In this article, we are going to = —| #aa2, (1-S)(1—S)+ dps>, SS;

study by the MC method the static properties of this hybrid (i (i

system. Then, a detailed simulation of the second phase pre-

cipitation in this system will be done, whereas domain +das S(1-S)+(1-9)S

growth is considered as a parallel sequence. We pay attention (i

to the kinetics of domain boundary precipitation and domain

growth. The problems we are interested in are: dependence —JAAZ (1=S)(1=S)[(1—fan) +fandki(a,B)]
of T, on the Potts-spin interaction, morphology and kinetic (i)

features of the precipitates at DB'’s, the LSW law to be con-

firmed in this hybrid model, dynamic scaling behavior, do- —Jss>y SS[(1—fgg)+faadi(aB)]

main growth kinetics, and scaling of domain size distribu- )

tion. After main results are presented, some relevance of our

model with real alloy systems will be discussed, such as the —JAB% [Si(1=-S)+(1-S)S]
effect of vacancies and ordered compound precipitates. The !
remaining part of this paper is organized as follow. In Sec. Il X[(1—fap)*+fadur(a,B)], 1)

we will briefly describe the hybrid mode. The static proper-
ties of this model will be studied in Sec. Il and the simulated
results of the kinetics will be presented in Sec. IV with ex-
tended discussion. In Sec. V we explore the possible re
evance of this model with real alloy systems. The conclusio
will be given in Sec. VI.

whereH, andHp represent the Ising part and Potts parHof
respectively;én, (m,n=A,B) denotes the Ising interaction
I(_)f nearest-neighboringn-n pair; (ij) represents that over
[qearest neighbors is summed ondg;, (=0) is the Potts
interaction factor associated with the Potts-spin pair between
the Ising spinsm and n; &y, is the Kroneckers function

which is defined &%
II. BRIEF DESCRIPTION OF MODEL

— AL

In our approach we assume that the phase transformation S =1+(Q-1)e"-&”)/Q, (29
is diffusion dominant, without involving lattice reconstruc- wheree® («=1,2, ... Q) areQ unit vectors pointing in the
tion. The approach is developed for the two-dimensionaly symmetric directions of a hypertetrahedror@r-1 dimen-
case. An extension to the three-dimensional one is direct. sions. However, this formula can be simplified in two-

We start from a two-dimensional squarédL lattice  dimensional lattice, i.e., the planar Potts model is utilized
with periodic boundary conditions applied. For modelinginstead of the standard Potts model:
species diffusion in the lattice, the spin-exchange Ising
model is used, with conserved number of total spin a—pf
states’3 Each site is occupied by one specidyr B, with 5Kr=C05< 2m 0 )
the Ising spin parameted, =0 for A and S;=1 for B. The
alloy composition is the€y=Ng/(Np+ Ng), whereN, and  In Eq. (1) an important variable which defines the behavior
Ng are the numbers of speciésandB, respectively, and the of domain boundary segregation fg,, (m,n=A,B) (0

(2b)
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<f,=1), a factor to scale the Potts interaction betweerdependence, if any, is not prominent, so that a conventional
Ising spinsm-n. As an example for better understanding of MC approach of the Ising spin exchange for phase precipi-
factor f,,,, one writes the Potts interaction for Ising spin- tation can be employed. As well reported previously, it is
pair B-B as more convenient to deal with the static property in a grand-
canonical ensembf¥. There the chemical potential differ-
BB_ enceun— up IS kept constant while€y=Ng/(Np+ Ng) is
Hp™= _‘JBB% SSL(1=Tee) + feadiel@.f)], (33 permitted to fluctuate, so that any evolution of the structural
ordering parameter can be identified. This is different from

whereS;=S;=1. One obtains two extreme situations: the case in real alloys, whef2, remains fixed.

—Jun-Co L2, minimal as faa=0 _It i_s o_bvious _that the hybrid model Edq1l) still _shows
. BB -0 BB pairwise interaction as long dg,, (m,n=A,B) remain iden-
Hp™= ~3 E SS S (. B), maximal asfgg=1 tical to each other. Therefore phase coexistence and Ising
BB O\ &, B ), BB™ +1-
(i)

criticality appear atup=pug, predicting that the critical
(3b) point is located aC,=0.5. However, if one deals with do-
main boundary segregation whefgg#faa, the critical
At fgg=0, HR® takes the minimal energy state, showing point may shift a little fromC,=0.5. Even so, a subcritical
no (a,B) dependence. The dynamic relaxation of the systenbehavior atC,=0.5 is still helpful for our understanding of
will drive B-B pairs toward the DB’s whose excess bound-the problem. Our simulation is made arou@g=0.5. The
ary energy can then be dissipated. Therefore segregation MC procedure was proposed previoudha brief outline of
B-B pairs onto those DB’s becomes thermodynamically faswhich is given below.
vorable and irreversible. However, no favorable tendency of For given system parameters, an initial lattice configura-
B-B pair segregation can be seerf §fz=1.0, becausHE’,B tion is chosen where the Ising spin for each site is imposed at
is completely(a,8) dependent. It reaches the maximum as arandom, satisfyindC,= constant. A multidomain configura-
function of fgg. As 0<fgg<<1, the boundary segregation of tion is folded onto the lattice by randomly imposing a series
B-B pairs is still favorable but less serious than the case obf circlelike domains until all lattice sites are occupied with
fgg=0. The same behavior is observed, referred to as eithd?otts spins. The later-deposited domains may overlap the
A-A pair or A-B pair. For the reason of simplificatiofi,g  earlier ones, resulting in a distribution of the domain size
=(fap+fgp)/2 is always taken in our approach, whateverover a range centered Bt This initial lattice configuration
fan OF fgp takes. may be constructed via other ways, such as depositing tri-
As ¢m=0 and <0, it is seen that there is no inter- angle, square or hexagon domains, however, the dynamic
action between the like Ising pair but repulsive force be-feature shows no substantial difference. On simulation, the
tween the unlike pair, respectively. This results in phase aglattice sites are chosen one by one in regular fashion. When
gregation of the like Ising spins, i.e., second phasea site is taken by (or B), it is considered a replacement by
precipitation®* In fact, ¢,,m=0 is not the necessary condi- B (or A), respectively. However, such a replacement follows
tion for phase precipitation. Here we define an effective in- transition probability:
teraction factor¢p=(daa+ ¢gr)/2— dag, SO T/T,, where
kT./¢=1.13~1.00 andk is the Boltzmann constant repre- W=exp —AH/KT), (4)
sents the normalized temperature of the system with respect
to T.. In our lattice, there is no probability to form ordered WhereAH is the energy change of such a replacement, cal-
second phase if only the nearest-neighboring interaction i§ulated according to Eql). If W<1.0, a random numbé®’
taken into account3®3® Our simulation is restricted to the uniformly distributed between zero and one will be gener-
conventional regular solid solutions where there is no inted and compared witkV. The replacement will be ap-
volvement of disorder-order transition during precipitation.proved aR’ <W and refused otherwise. This process is con-
This restriction may be released to some extent that orderegiénued until a given set of simulation circles is reached.
second phase is observable when the next-nearest- The order parametep of the transition is defined &s
neighboring interaction is considered. We will come back
this point in Sec. V. 1
V= (1-25),
Il. STATIC PROPERTIES OF COUPLING MODEL : (5)

In this part we study the static property of the lattice, U =1— (¥
referring to the Ising spin interaction coupled with the Potts - ()3’
spins, as defined in E@l). In more detail, we study depen-
dence of the Ising criticality on the Potts-spin interactionwhereU, is the reduced fourth-order cumulant of the order
(Jmn» Tmn,» @and domain siz&). We want to ensure that the parameter. It has the following properties:

TABLE |. System parameters for static property simulation.

Co daa dBB kT/¢ Jmn/ ¢ (M,n=A,B) L R fan fae
0.50 0.00 0.00 0.85-1.20 0.0-1.20 32-128 10 1.0 0.0or 1.0
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0.3} Zobwee RN perature until a saturated value at I&. For a fixedJ,,,
0.2} I NN U, ~KkT curves for the four values &f roughly show a com-
01t@4 =06 X mon intersection poingkT.,U,(T,)). Note thatU (T.) de-
07 viates not far from 0.62 and the saturated valueUof is
0'6_ close to3 too. It is seen that the critical poift, shifts a little
0‘5_ ‘ downward with increasind,,. At Jn,=0, kT./¢$=1.12,
0'4__.,_1=3z quite close to 1.13, the critical point of the Ising model. As
03_:@ Jnn/ $=0.90,kT./ ¢ shifts to 1.02, not so much lower than
0'2_-°-}-'2° the value atl,,,=0. It is then demonstrated th&t is not so
’ I 4= much sensitive t@,,.
0.1}+@ J,mn””'?'g W mn

As fap=1.0 butfgg=0.0, a downward shift off . with
increasingd,,, is still observable. However, the shift is less
kT/¢ than the case dfya=fzz=1.0. The simulated data are given

in Fig. 2, wherek T,/ ¢ is plotted vsl,,/ ¢. In fact, the shift

FIG. 1. Fourth-order cumulan, as a function ofkT/¢ at  of T, becomes less as eithé, or fgg is smaller. This

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

various lattice sizé for systems of different Potts interactidﬂm. conclusion is quite understandable if one consults (Bm
where the Potts part of the Hamiltonian takes its minimal and
U —2/3 asL—o for T<T, maximal asf,,,=0.0 and 1.0, respectively. Regarding the
U, ~0.62 atT=T effect of domain sizéR on T, the simulated data show no
- i © identifiable shift of T, unlessR<4. As R<4, the DB’s oc-
U —0 asL—e  for T>T; cupy most of the lattice and significant fluctuations Tof

) N ) . i shall be observed. It is then concluded that the hybrid model
Basically, the position of  is determined by evaluating the shows no essential difference in the static property from the
simulatedU from lattices of various dimensiob and find-  pyre Ising system unles® is very small. The simulation
ing their intersection position, as being plotted as a functiorh|gorithm for the dynamic process can be the same as the

of temperaturel scaled by factokp, becauseJ, is indepen-  conventional MC approach for the Ising system.
dent ofL at T.

The system parameters as chosen are listed in Table I. WI%. DOMAIN BOUNDARY PRECIPITATION AND DOMAIN
study the dependence of. on three parameters,,,, fmn GROWTH
(m,n=A,B), andR, as defined in the Potts model. Note that
R=10 is chosen here becausstarting from 32 is taken and Our simulation starts from an initially random configura-
L>R should be satisfied. Figure 1 shows the simulated retion of the Ising sping¢A andB) in lattice. The Potts spins are
sults atf,a=fgg=1.0 where the cumulant), is plotted distributed over the lattice via the same way as described in
againstkT at variousJ,,,. Both kT andJ,,, are scaled with  Sec. Il. We choos®=24,C,=0.10,L =256, and occasion-
¢. At each casel, grows gradually with decreasing tem- ally 128. The parameters of interaction for two systems to be

TABLE Il. The parameters of interaction for systems | and II.

System ¢AA/kTC ¢BB/kTC T/TC ‘]mn/ch (m,n:A,B) fAA fBB fAB

| 0.00 0.00  4.40-0.22 1.20 1.0 0.0 0r 1.0 faf+fgg)/2
[ 1.20 1.20  4.40-0.22 1.20 1.0 0.0 or 1.0 fap+fgg)/2
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FIG. 3. Snapshot pictures of DB’s configuration and solutes for
system | aff/T;=0.8 andfzg=1.0. The time scales are inserted in
the figures.

simulated are listed in Table Il, where in system | domain
growth is very slow and precipitation is dominant because
Jmn> dmm- This property allows one to choose much larger
R thanl., characteristic scale of the precipitated structure.
For system I, the Ising events and the Potts ones are chosi
with comparable probabilitydue t0J,,~ ¢mm SO that do-
main boundary migration becomes quite high. In this case, g, 4. snapshot pictures of DB’s configuration and solutes for
quite small initial domain sizee.g.,R=10) is chosen, leav- system | aff/T,=0.8 andfgzz=0.0. The time scales are inserted in
ing enough space for the rapid domain growth. For bothhe figures. The arrows indicate the boundaries that play as rapid
systems, strong segregation of solBBeonto DB’s is ex-  channels for diffusion.
pected if fgg=0, and no segregation is preferred figg
=1.0, becausé,=1.0. snapshot pictures at several times for the same system but
The MC algorithm and procedure of simulation were re-fzg=0.0. The solid circles represent DB’s and the open
ported in our previous work and therefore will be no circles represent solutes, leaving solveitanlabeled.
longer presented here. Note that the present algorithm is From Fig. 3 it is clearly shown that in early stape=5
more efficient than the conventional Metropolis algorithm.mcs(1 mcs represents a complete& L circle)] the solutes
For each system, at least four runs of simulation startindegin to aggregate into small clusters, i.e., formation of small
from different seeds of random number generation have beeprecipitates. Either growth or coarsening of the larger pre-
made and the average values of the simulated data are preipitates in compensation with shrinking of the smaller ones
sented here. At=0, the Ising spin for each site is chosen ator coalescence of the smaller precipitates into larger ones is
random, whereas the domain sRaanges from 25-50 lat- observed. The homogeneous phase precipitai®ishown,
tice units, and sometimes, 9—10 units for system Il. We willas predicted. Really, neither preference of precipitation on
first give a glance at the morphology of precipitates on DB’SDB’s nor shape anisotropy of the precipitates is identified.
and then obtain a qualitative understanding of the influencé&evertheless, it should be noted that h&res not far from
of temperature. The domain growth features will also be deT., and thus there exist a lot of monomers, dimers, trimers,
scribed before a series of parameters are evaluated to chamnd so on, in addition to the precipitates.
acterize the precipitation at DB’s and domain growth. As fgg=0.0, as shown in Fig. 4, very different kinetic
phenomena are observed. Taking effect immediately from
the quenching, the solutes are observed to aggregate along
DB’s, producing high boundary precipitation tendency.
For comparison, we first present in Fig. 3 the snapshoMany small precipitates inside domains are observed in early
pictures of DB's configuration and solutéB) at several stage {=50mcs) in addition to those at DB’s. The precipi-
times for system | afl/T,=0.8 andfgg=1.0, where no tates on DB’s grow rapidly and interconnect with each other
boundary precipitation is expected. In Fig. 4 are given theto form stripelike pattern along the local DB’s. These stripes

t=2100mcs t=3400mcs

A. Precipitation and morphology of precipitates
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become thicker and thicker across the DB’$=@00
~3400 mcs). Most of the small precipitates initially inside
domains shrink through monomer diffusion towards the
DB’s nearby them, although several of them occasionally
coarsen through absorbing solutes surrounding thent At
=3400 mcs, it is rare to find precipitates inside the domain
other than some individual solutes. Strong domain boundar [#
precipitation is demonstrated in the present system. .
There are several features worthy of mention for the
boundary precipitation. First, the precipitates on DB’s have },
stripelike shape. The shape of a local precipitate is com
pletely determined by the local boundary shape. Second, tr
precipitate distribution on DB’s is nonuniform. Some bound-
aries are completely occupied with precipitates whereas th
others are less or nearly free of the solutes. This picture i
easily understood because excess boundary energy is assc
ated with the Potts-spin difference between adjunctive twc
domains. The boundaries with higher energy prefer the sol
ute occupation. Third, it is recorded that DB’s really play as
a rapid channel for diffusion, although a quantitative charac [\
terization of such a sequence is still unavailable to the au|™
thors. As indicated by arrows in Fig. 4, the local boundaries %
attract the surrounding solutes and then transfer them to t (€} t=3400mcs (d) t=3400mes
neighboring boundaries where the higher energy is possessed ) , i ,
and thus solutes become concentrated. Although the function /G- 3- Snapshot pictures of DB's configuration and solutes for
of the local boundary as channel of diffusion depends morf—f‘x_ygtzgn ! ?tT/ICOZOZB anng: 0_'01(3) 3ndeﬁB:t.1'0(b)’ TndT/TC.
or less on the boundary property itself, those boundaries With_ert'ed iisthBeBE L.Ire(SC) andfgp=10 (d). The time scales are in-
moderate Potts-spin interaction play the best as the channels. 9 '
In fact, in our simulation it is recorded that the average root-
square shifting distance for each Ising spin at DB’s is muckheir locations too much. This effect becomes even more
larger than that for Ising spin far from DB’s. In qualitative, considerable as the boundary migration ability is high, to be
one understands that the solutes to be trapped by the DB’s shown later.
very high excess energy cannot shift away anymore as long
as they are trapped. These DB'’s then become drains of sol-
utes instead of channels of diffusion. The DB’s of very low C. Influence of temperature
excess energy have little chance to collect solutes surround-
ing them. Nevertheless, those DB’s of moderate excess e yinetics of precipitates. In Figs(&5(d) two examples
ergy can collect as many solutes around them as possible gn = . ,
one hand, on the other hand they transfer at a high probabiﬁre given. In the top row are separately shown the configu-

ity the trapped solutes toward the neighboring DB’s of highratIon pictures forT/Tc=2.4 an.df.BBZO (@) andfgg=1.0 .
excess energy, resulting in rapid diffusion of solutes alon b). Note here that the system is in fact undersaturated since

these DB's. >T.. No aggrega_ti_on _of sol_utes is observed in_ Figh)5
However, one identifies intensive solute segregation on DB’s
in Fig. 5a), although the segregated clusters are dilute in-
B. Features of domain growth stead of compact. The thickness and length of the precipi-

In parallel to the boundary precipitation or aggregation,!at€S are much smaller than those shown in Fig. 4. ,
domain growth through boundary migration is also clearly "€ more interesting point refers to the bottom row in
identified in Fig. 4, althougIR is quite big. The domain Fig- 5, where the configurations at loW(T/T.=0.32) are
growth looks to be isotropic and the domains are equiaxe@resented respectively fégp=0 (c) andfgg=1.0(d). Dis-
because we impose a high value@{Q=24). The growth tinctive and large precipitates are formed at the early stage. If
of larger domains in concert with shrinking of smaller oneswe would not have mapped the DB's, the lattice looks to be
is still observable in spite of slow boundary migration. Do- €xperiencing homogeneous precipitation at high supersatura-
main coalescence events are also occasionally identifiedion. Nevertheless, a careful identification reveals that many
Four-domain junctions created through shrinking of theprecipitates still prefer to stick on DB’s dgg=0.0 [Fig.
smaller domains become unstable and each finally splits intb(c)]. The shape of precipitates on DB’s is more or less
two trijunctions. The normal domain growth is equiaxed instead of stripelike pattern. However, the number
displayed®*-2° density of the precipitate inside domainsfgg=0.0 is lower

However, a comparison of Fig. 4 with Fig. 3 shows seri-than that atfgg=1.0. This indicates that the boundary pre-
ous pinning of DB’s by the precipitates. When all boundariescipitation is no longer as remarkable as highalthough it is
in Fig. 3 change their locations from time to time, the highly still preferred. It is thus demonstrated that the boundary pre-
solute-trapped boundaries shown in Fig. 4 do not changeipitation features are very temperature dependent.

&

We look at the effect of temperature on the morphology
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FIG. 7. (E) (& andI" (b) as a function ot for system | asgg

eters of the microstructure as a function of time and system
parameters. First, we define an occupation factor of the sol-
utes at DB’s,I'. It scales the number fraction of all domain

FIG. 6. Snapshot pictures of DB’s configuration and solutes forboundary sites that are occupied with the solutes. This
system Il afl/T.= 0.8 andfgg=0.0. The time scales are inserted in \yites:

the figures.

. . o I'=(Cpg—Cy)/Cpg, (7)
D. Features in the case of rapid boundary migration

. o . hereCpg represents the domain boundary sites occupied b
Before evaluating quantitatively a series of parameters, le\lf}: De feP y P y

look at what h DB's h hiah miarati bilit e solutes normalized by all domain boundary sites. Obvi-
us look at what happens as s have high migration a IIfpusly, I'=0 if solutes have no preference to aggregate on
(i.e., system IJ. Figure 6 presents the snapshot pictures o

; . DB’s since Cpg=~C;; I'=1—-C, if all domain boundar
DB's and solutes at several times fa/T.=0.8 andfgs  i'c oo occﬁ%iedowith solute(; due @e—1: and O<Fy

=0.0. The boundary precipitation shows similar features as<1700 otherwise.

in v | il here he domln ionh becomes vy 'y i 7 ar pioted agers e the average cnergy o
) » SY [¥teraction per site{(E)=—H/L?, andT for T/T.=0.8 at

precipitation than system |. Due to the fast boundary migra .=0.0 (solid line) and 1.0(dashed ling It is shown that

tion, more precipitates are found inside domains becaus
then can not catch up with the DB’s at which they trapped or both casesE) grows gradually and bepomes .SlOW at the
late stage. Not onlyE), but also the Potts interaction energy

earlier. : : ;
"y . , - at DB’s, can be fitted well witE) ~exp(—v/t) wherev is a

In addition, the pinning effect of DB’s by the precipitates . ' - .
remains remarkable. The solute-concentrated boundariggNStant: That highe(E) at fgz=0.0 than afgg= 1.0 indi-

hold unmoved with time. This effect. on the other hand Cates that boundary precipitation rather than homogeneous
makes those solute-free boundaries highly rippled due to thBreC|p|tat|on is preferred thermodynamicallly. fluctuates

fast motion. Regarding the effect @f no significant differ- aroundl’=0 anB_B: 1.0, but grows rapidly up t0 0.70 in the
ence is observed referred to systems Il and I. early stage aézg=0.0. Afterwards it tends to be saturated at

I'=0.75. This tendency is consistent with the observation in
_ , Fig. 4. Note here thal'=0.75 is already not far from the
E. Occupation factor at DB's maximumI =0.90 (sinceC,=0.1).
In order to characterize the kinetics of the boundary pre- As fgg=0.0, the simulated’ att=1000 mcs for different
cipitation and domain growth, we evaluate several paramvalues of T/T. are given in Fig. 8. Strong temperature de-



7120 J.-M. LIU, L. C. LIM, AND Z. G. LIU PRB 60

0.8 50
t=1000mcs system /, T/T C=O.80
{ ceaeegystemd | ] e LSW law o/
07 } } ----------- —o— system // 40+ o /
....... /
=2 | o
' s ¥ /O/f =0.0
~ - o BB
g /
~ 20} e m—
~© /g/.m...‘n. @B T
/8/'3 ..... f =10
1017
5 O 1 1 1 L 1
0 800 1600 2400 3200 4000
t (mcs)
FIG. 8.T (t=1000 mcs) as a function df/ T, for systems | and FIG. 9. I, as a function ot for system | afT/T,=0.80 asfgg
Il as fgg=0.0. =1.0 and 0.0, respectively.
pendence of" is demonstrated. Interestingly, over the simu-
lated range of temperatur€, exhibits a single-peaked pat- Xy )= 1
tern. The peak position is located @T.~0.8 for both gLy D=1
systems. On one side whefie>T., solute aggregation on Ll
DB’s is not serious, e.gl'=0.57 (I) and 0.43(ll) at T/T, E
=2.5. On the other side, howeveF, is down to 0.45 at X (G(m,n,1) = Co)- (G(M+x,n+y,t) = Co),
T/T.=0.32. This corresponds to the case as shown in Fig. ’
5(c). The peak height of (T/T.) for system Il is a little (8)

lower than that for system |, indicating that a high mobility P . . .

of DB’s weakens the tendency of the boundary precipitationWhe_reG(m’n’t) __0 _'f site (m,n) is OCCUp'e.d by spirk, oth-
Figure 8 discloses a fact that strong domain boundar)‘?nfv'see(m’n.’t)_l’ xandy are the coordinates along the

aggregation may only be achieved within a limited range of®XiS andy axis, respectively. From Eq8), we can also de-

TIT,. At either very low or very high temperature, weak fine t.he axially oriented and radially averaged correlation

solute aggregation on DB’s and then a quasihomogeneod¥nctions:

precipitation is expectet!. We therefore argue that the maxi-

mal boundary precipitation tendency can be achieved only at 9(x)=g(x,01),

a moderate supersaturation wifmot far belowT.. In fact,

this has been a well-known experimental phenomeéron. g(y)=g(0y,t), 9)
To understand this phenomenon, we come to our model

Eqg.(1). AsT>T,, the thermal activation becomes very pro- 1 E ¢ it

nounced and any spin-aggregation event whose probability is 9=y <+ g(xy, 1), r=ix+jy,

determined by~exp(—AH/KT), whereAH is the energy dif-

ference after and before the event, will not be preferred veryvhere M is the number ofg(x,y,t) which satisfiegr|<r
much due to larg&T. Therefore precipitation either at DB's <|r|+ 1 overall the lattice sites arg{r) represent the radial
or inside domains is not favorable at high temperature. Oryerage ofg(x,y,t). Considering the fact that no consider-
the other hand, a¥§<T., i.e., at deep supersaturation, the gpje anisotropy of the precipitate distribution appears, we
solutes either nearby DB’_s or inside domains show VeNonly present our analysis @f(r) below.

strong tendency of precipitation. They aggregate together g(r) oscillates around theaxis. The wavelength, scales

very rapidly into stable precipitates. Note that only is CON-4 o avera : ., o
. oY ) : : ge size of the precipitates and it is comparable to
sidered the nearest-neighboring evegither Ising or Potts the interprecipitate spacing. Therefore time evolution of

in our model. Any solute desorption from existing precipi- characterizes growth and coarsening of the precipitates. In
i i > - '
tates is strongly unfavorable sindd4/kT>0, unless the sol Eig. 9 are plotted.(t) for system | at bottf gg= 1.0 and 0.0.

ute has its destination at DB’s after one-step spin exchang - | hi i h he simul
It is thus very hard for those solutes on the surface of exist:*S fes=0.0 | achieves rapid growth over the simulated

ing precipitates that are at least two to three lattice units fronP€riod, referring to the case 6fg=1.0. Especially afl/T.
any boundary si{@) to evaporate away. Therefore all pre- =0.8, | for fgg=0.0 is three times that fofgg=1.0 ast
cipitates inside domains remain quite stable against coarsef=3400 mcs. Furthermore, different kinetic behaviorsl of

ing or segregation onto DB’s. for fgg=0.0 and 1.0 is identified. Fdizgg=1.0, the growth
shows continuously decelerating, whereas a roughly linear
F. Kinetics of precipitate growth and coarsening growth of | is observed in case df;z=0.0.

We study the kinetics of growth and coarsening of the Regarding the effect of temperature on the kinetics, one
precipitates when the boundary precipitation is preferredpresents the simulated data lof at different T/T, as fgg
The spatial correlation function of the solutes in lattice can=0.0 in Figs. 10a) and(b) for systems | and II, respectively.
be defined as Note here once more that there is no precipitate observed at
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t (mes) samplings gives quite good data. The evaluated data)ats

a function oft for system | aff/T.=0.8 are presented in Fig.
FIG. 10. I as a function oft at variousT/T. as fgg=0.0, for 11. (A) at fgg=0.0 is smaller than that dtzg=1.0. This
system I(a) and system I(b), respectively. difference becomes even more remarkable toward the late
stage. It allows one to argue that domain growth is hindered
T/T>1 asfgg=0, however, domain boundary segregationpy precipitates at DB’s. For system II, similar results are
yields. g(r) still produces an oscillation. The data {t)  revealed. Furthermorép) exhibits a roughly linear depen-
thus evaluated are presented in Fig. 10 for comparison. It igence oft at fzgg=1.0, whereas this dependence becomes
seen strong dependence lgft) on T/T.. At similar time  much weaker afgg=0.0. This fact predicts that the kinetics
scale,l; shows growth with decreasing dfat T>T., then  of domain growth deviates from the normal kinetic law as
decays with decreasing dfat T<T.. The peak ol (T) is  the domain boundary precipitation is favored.
again roughly located at/T.=0.8. It is easily understood This time dependency A for systems | and Il afgg
that this dependence is attributed to the same reason that0.0 under differenT/T, are given in Fig. 12. At a similar
determined’(T), as just discussed in the previous section.time scale,(A) for system Il is much higher than that for
Let us see agaih(t) at variousT/T, for both systems | and system I. The reason is quite obvious. It is also observed that
Il, a roughly linear relation is established at high®fT.,  (A) decreases aB/T, decreases, because the mobility of the
whereas a negative deviation from the linearity is observegyrecipitates is lowered at loW. This effect pins DB’s from
asT/T. is quite low. This deviation is more remarkable in moving and then hinders growth of the domains.
system Il than in system I. As is well known, the LSW law is
usually used to characterize the kinetics of precipitate coars-
ening in alloys, the present simulation provides us an oppor- H. Broken LSW law and growth exponent

tunity to check this law in case of domain boundary segre-  ag we mentioned above, the precipitate coarsening shows
gation. More details are presented in Sec. Ill H. quite different kinetic behavior, depending on whether strong
domain boundary segregation is preferred or not. Thus there
G. Kinetics of domain growth is a need to recheck the applicability of the LSW law and
In this section the kinetics of domain growth is empha-"€lated growth exponent. As is well known, coarsening of
sized. The aim is to check the normal linear law for domainmulnprec[pltated microstructure controllled uniquely by s_ol-
growth as domain boundary segregation features are consité diffusion follows the LSW law, owing to the potential
ered. We apply the random sampling technique to evaluatgifference in precipitate/matrix interface between two neigh-

the domain area distributiof(A,t) and define the average P°°ring precipitates of different siz8 Suppose that total
domain aregA) as volume of precipitates is constant and low, and the size dis-

tribution of precipitates ip(l,t); we can write following
(Ay=2 A-T(AD) / > f(AD). (10
| I

continuum equation to be satisfied during the coarsehing:
Although the sampling per lattice fluctuates due to limited 3_9 i f7_| -0 (119
size (L=256), an averaging processing on more than ten at pat '
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system I(a) and system I(b), respectively.

Toward the late stage of coarsening, distributp(h,t) re-

PRB 60

between precipitates and DB’s. Equati¢hlb) should in-
clude this additional attractive term. A reasonable approach
to the problem starts from adding a new term to the right-
hand side of Eq(11b):

dlc D'O'AB D'QDB
qr Pt T2 TP TR (13

wherep, is a positive constant on the same order of magni-
tude asp; (p1~p2), Qpg is the potential difference between
two precipitate inside domains and at DB's, respectively,
separated by-R. This term reflects the attractive interaction
between DB’s and precipitates inside domaif3pg/R
should have the same unit asg. As the zero-order ap-
proxirgnation, for examplegag andQpg may easily be writ-
ten a

1
TABT T 7 das~KT/4,

QDB/R~4JBB(1_fBB)WSkTC(l_fBB)'

Clearly, one haf)pg/R>o0g asfgg is zero. On the other
hand, domain growth is a slow sequence with respect to pre-
cipitation, i.e.,dl./dt>dR/dt. ThereforeR can be approxi-
mately viewed as a constant in Ed.3). The solution to Eq.
(13) reads ifl ,(t=0)=0 and constantp;~p,~1:

oagR Q D-Q
lc=\/ s tg‘l(IC\/ )4 By,

QDB O'ABR T R
As mentioned above, i€)pg/R> 0,5 is satisfied and, is
not very small, one has as the zero-order approximation

(149

D'QDB

|C~ WL (l4b)

This equation may not be a quantitatively acceptable expres-

mains stationary although its position shifts toward the largesion of the coarsening phenomenon, but shows the influence
size side. This means that there exists an average precipitad¢ DB'’s in a qualitative way. The growth exponept 1 for

sizel . satisfyin

where p, is a positive constantD is the solute diffusion
coefficient, andr,g is the interface energy between the pre-
cipitate and matrixi.e., B cluster andA matrix). Equation

(11b) yields

Io(1)3=1,(t=0)3=(3p;-D-0ap/T)- t=K-t, (123

whereK is a positive constant. Equatiqii2a is the well-
known LSW law. Asl;(t=0)=0, Eqg.(123 yields the well-

g the following equatioff

dIC_ D'(TAB 1
EIRC

known power law with growth exponent= 3.

In our hybrid model, the precipitate coarseningfag
=1.0 is nearly pure-diffusion controlled. The evaluatgd)

Iczg\lpl' D'O'AB/T'tYOCt‘y.

(11b

(12b

the precipitate coarsening is established in case of serious
domain boundary segregation, well consistent with our simu-
lated data shown in Figs. 9 and 10. Furthermore, it is seen
from Eq. (14) that |, grows at a lower rate a$ is lower
because ternD/T is a decaying function of, and a large
domain size corresponds to a slow growthlgf As R is
quite large, Eq(14b may be no longer a good approxima-
tion of Eq.(14a. A negative deviation of Eq14g from the
linearity is expected. We then have ¥/3<1. All of these
predictions are well confirmed with our data shown in Figs.
10(a) and (b) (see our analysis in Sec. lI)F

For a better understanding of growth expongnbne uses
Eqg. (12b) to fit the simulated data and the evaluateds a
function of T/T, is plotted in Fig. 18a). It is seen that for
both systemsy=0.33+0.04 at fgg=1.0, independent of
T/T.. Very good consistency of the simulated data with the
LSW law is indicated. However, dtzg=0.0, y no longer
keeps unchanged but shows a value much larger than the
LSW exponent 0.33. It increases first and then decreases

indeed follows the3 power law, as shown in Fig. 9. As with decreasing off/T.. The maximal, very close to 1, is
fgg=0.0, considerable domain boundary aggregation is obreached aff/T.=0.8. Nevertheless, note here that at low
served, indicating existence of a strong attractive potentialemperature T/T.<0.4) y reapproaches the LSW exponent.
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1.0 where(A), is (A) att=0. A growth exponenty=1 is then

(a) defi . .
\ ILf =00 efined and well confirmed by real and computer experi-
0.8} E& ments. Our simulated data (&) as a function of, as shown
\ R in Fig. 11 atfgg=1.0 where normal domain growth is ex-
06} —13 pected, support this linear law. However, Ed5b) is no
~ I £,5=0.0 longer true when domain boundary segregation is favored
0.4k (fgg<<1), because gz here is no longer time independent
= SRS ] but decays with sinking of solutes onto DB’s. Because our
02l 11 =10 simulation reveals thatl, in Eq. (1) decreases exponentially

with time, simply, one can rewrite Eg159 as

dR DDB EDB[l_qu_T/t)]
© f a T R (163

10t S ee
ﬁ%———{/’{\{ with 7 the characteristic time. Apart from the early stage of

08F domain growth {> 7), one obtains an approximate solution
to Eq.(16a:

0al 7{ (A)=(A)o+2¢(Dpa/T)Sps- 7IN(t). (16

I, £,,=0.0 Therefore a negative deviation @& from the normal linear
law is predicted, confirmed with our simulated data shown in
s s Figs. 11 and 12 atgz=0.0. Regarding the effect df, one
understands thaf)pg/T) decays rapidly withl so that(A)
T shows slower growth at lower, no matter whaf gy takes.
The data evaluated at variotigT at fgg= 0.0 for both sys-
FIG. 13. Growth exponeny for precipitate coarseningg) and ~ tems | and Il qualitatively support E¢L6), as shown in Fig.
the exponenty for the domain growth at variou3/T; as fgg 12.
=1.0 and 0.0, for systems | and I. Nevertheless, people are used to applying a power law:

1.2

0.2r

The reason is that the second term on the right-hand side of (A)=(A)o+b-t7, b>0 17
Eq. (148 decays very rapidly with decreasing Bf The first

term on the right-hand side of E¢L4g becomes relatively
important at lowT, thus resulting iny recovering back to the
LSW exponent. In fact, to date most of the evidences fro
experiments and simulations refer to the cases of deep sup
saturation, so that the LSW law has achieved widesprea
support. We therefore conclude that the coarsening of th L . ;
precipitate depends on the domain boundary segregation bggndent off. The normal kinetics of domain growth is dem-

havior and the LSW law becomes no longer applicable fc)Ionstrated. When the boundary segregation is favored, the
the case of favored boundary segregation data are much lower than the normal valge 1.0. The dif-

ference reaches the maximumTail .= 0.6—0.42, where the
_ ) simulated valuep=0.40+0.05. As expected, the simulated
I. Broken linear law and exponent of domain growth » at very low T (T/T.=0.23) recovers up to 0.73, not far
Now we come to check the linear law for domain growth from the normal value. Therefore we are allowed to conclude
sequence. The domain growth is solely driven by the excesat the normal law of domain growth is broken and no
energy associated with DB’s. For normal domain growth, itlonger applicable as long as the domain boundary segrega-
is assumed that the domain size follows a monodispersedon is strongly favored.
distribution, therefore the property of average domain area

(A)~R? uniquely characterizes the behavior of domain j, Scaling of precipitated microstructure and domain size
growth. The kinetics can be described?by?°

with growth exponenty to fit the domain growth data. In
fact, Eq.(16b may not be a quantitative acceptable law due
Aio a series of approximations made. We prefer to apply Eq.
17) to evaluate the value of, rather than using Eq16h).
he results are shown in Fig. 8. At fgg=1.0, the simu-
ted data for both systems fluctuate arouyv 0.95, inde-

Finally, we come to check the scaling state of both the
precipitated microstructure and the domain growth. The scal-
d_R: (%)h (159 ing of the precipitated microstructure reflects a stationary
dt T/ R’ state achieved in lattice with respect to the unique character-

istic lengthl, . In the diffusion-limited aggregation, all of the
whereg is a positive constanb pg is the coefficient scaling correlation properties of the microstructure should hold sta-
the mobility of DB's, andX g is the domain boundary en- tionary after rescaled with,, leaving!, to grow according
ergy. The latter can be roughly treated as a time-independef some power lav:> However, in case of the strong bound-
quantity. One thus has the well-known linear law ary segregationl is not only determined by the diffusion
but also dependent of DB'’s, so that the scaling state may no
(AY=(A)+2¢(Dpp/T)Zpg-t, (15b  longer be reached.
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crossing point, at whichg(ly) =0, so they may fall onto the = 8 Ay,
same curve if the scaling state would have been reached %~ 004} Ny
Anyway, these data points look to be still far from falling o Y
onto one specific curve. This allows us to conclude that no g Q’%
scaling relation is satisfied with the microstructure, at least 0.00 F &g&&w@ e a o
until the longest time we reachetk= 3400 mcs(this time [') 1 2 3 "1 5 é

scale equals to fOncs in the conventional Metropolis algo-
rithm). It provides us the first evidence that the scaling law A/<A>

for homogeneous second phase precipitation may no longer

be applicable when domain boundary segregation is strong| FIG. 15. Scaling of the domain area distributions at various
favored. It should be mentioned that as evaluating the data 515“35 asfgg=0.0 for system II.

low T, we do observe that the system approaches the scalin% . f th lusi hat th lina holds for th
state but never reaches it at the longest time scale reacheUPPOrtive of the conclusion that the scaling holds for the

On the other hand, it was revealed earlier that the domaiffomain growth even in the case of strong boundary segrega-

shape and topological relations at DB’s do not change rello"-
markably during domain growth. Although the kinetic expo-
nent shows serious deviation from the normal value, it is K. Remarks

surprising that the scaling for domain growth still holds. The A number of interesting features associated with second
data of scaling processing are presented in Figéa) 1and phase precipitation and domain growth are basically attrib-
(b) for system Il where domain growth is developed overyted to the coupling between the Ising model and Potts
large spatial scale. It is clearly shown that for each case aljpdel. What should be pointed out here is that the Ising spin
data aftert=900 mcs fall onto one specific cune(A/(A))  states are conserved whereas the Potts-spin states are not.
W|th|n the Statistical Uncertainty, demonstrating the Sca”ng'rhe Conservation Of the |Sing Spins ||m|ts Coarsening Of the
property of domain growth even when domain boundary segprecipitated microstructure so that a power law Dfis
regation and precipitation are strongly favored. The sam@chjeved. The growth exponent for domain growth becomes
conclusion works for system | too. _ 1 (taking the linear dimensioR~t7, we haven= %) due to
Nevertheless, what should be pointed out here is that thghe nonconservation of the Potts spins. A coupling of the two
much large spatial scale. The lattice size employed in present
work may be large enough for simulation of precipitated  The reason that favors the scaling property of domain
microstructure, but not large enough for domain growthgrowth is the highQ states chosen for constructing the Potts

simulation. Furthermore, the domain size that can be demttice, which results in a roughly isotropic boundary con-

domains involved for statistics in the late stage is not
enough. In fact, if one replots (A/(A)) just over a small
A/{A) range, says from 0-2.5, the curves at various times
still show some differences to each other. Therefore the con- We have presented in detail our simulated results and re-
clusion on the domain growth scaling may not be convincingvealed a series of interesting phenomena in the binary sys-
before a much larger scale simulation is carried @oit ex-  tems where both domain boundary precipitation and domain
ample,L>1024). We just show that the present data lookgrowth proceed in parallel. Especially, we have demon-

V. SOME RELEVANCES TO REAL ALLOY SYSTEMS
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strated that the LSW law and scaling property of the phas@ecessary to take positivé,, and ¢gg and keep¢ un-
precipitation are broken when the boundary segregation ishanged for our simulation. In this case, vacancy aggregation
preferred. For domain growth, an abnormal kinetics has beeat the A/B phase interface was confirm&dFor the present
revealed although the scaling property may still hold. Jushybrid model, vacancies may aggregateAdB phase inter-
viewing from the kinetics of either phase precipitation orface or DB’s, depending on a competitiontdf andHp via
domain growth, the precipitate coarsening is acceleratethe aggregation.

whiles the domain growth is decelerated. Nevertheless, real
alloy systems may not perform as simply as we have shown
above. Many kinetic and structural features associated with
precipitation and boundary segregation in polycrystalline Equation(1) may also be used to describe precipitation of
materials cannot be imaged by our approach @g. For  orderedA-B compound in the multidomained lattice. Strictly
example, real alloys decompose via the spin-vacancy exspeaking, a correct description of precipitation of stoichio-
change mechanism instead of spin-spin exchange. In a numetric orderedAB compound requires inclusion of the next-
ber of cases, the precipitate phase is structurally orderedearest-neighboring Ising interaction between spe&iasd
compound. Formation of the new second phase accompani@* Therefore Eq(1) has to be modified for such a descrip-
the generation of long-range stress field. It is impossible tgion. Suppose that the second phase i&\BABtype ordered
approach all of these features and very hard to deal wititompound, there will appear a number of sr@eABorder-
them in a preliminary sense. However, considering the facing domains(OD’s) in lattice until the Ising-spin balance is
that our hybrid model is intrinsically of short range, it is still reached, following by coarsening of the larger OD’s in con-
helpful to give a preliminary discussion on effect of vacan-cert with shrinking of the smaller ones. Note here that
cies and kinetics of second-ordered compound in the framegrowth of the OD’s may not require long-range diffusion of
work of Eq. (1). A detailed simulation of them is left for species, the kinetics of the ordering-domain growth obeys

B. Precipitation of ordered compound

future work. power law* instead of the LSW law for pure second phase
coarsening.
Regarding the interaction of DB’s and OD's, &kg
A. Spin-vacancy exchange mechanism =1.0 one may not be able to observe any interaction be-

An alloy contains a number of vacancies, third spedes tween them. How?ver, whefpg<1.0 or 0.0, segregation of
besides species and B. The spin-vacancy exchange is a th_e solu_tes at DB’s may be observable. I_n such a case, the
realistic mechanism for species diffusion. An acceptable aglSing-spin conservation introduces repulsive force between
sumption is that there is no interaction between vacancie®B'S and OD’s. This implies that the formed OD's have a
and species, whether the Ising-type or Potts-type. Therefor@ndency of keeping away from the DB’s nearby. Domam
Eq. (1) still remains applicable for theé\-B-V systent boundary segregation will hinder coarsening o_f the OD’s al-
However, the MC algorithm and procedure for the Ising sefhough the OD's far from DB’s may coarsen via the normal

quence have to be modified, whereas the algorithm and pr(511echanisms. This problem remains of special interest and is

cedure for domain growth remain unchanged because th¥orthy of detailed study.
Potts event does not need spin exchange. For the Ising se-
guence, a site is chosen only if it is occupied by a vacancy or
it has neighboring vacancy. If a vacant site is chosen, it is
permitted to do exchange with any of its four neighbors. The
site must do exchange with its vacant neighbor if it is taken In conclusion, we have studied by means of MC method
by A or B. A spin-vacancy exchanging event is approved bythe static properties of the Ising-Potts hybrid model proposed
the same probability criterion. earlier, referring to phase separation and domain growth in
This modified approach was used to simulate homogebinary alloys. It has been demonstrated that a coupling of the
neous second phase precipitation in single-crystallindsing lattice with the Potts spins shifts the Ising critical point
solution3* Basically, there is no difference in the microstruc- toward a lower temperature. This effect is, however, quite
tural and dynamic features between the spin-spin exchangeeak, especially in the case of the strong domain boundary
mechanism and the spin-vacancy exchange one. The vacagegregation expected. The domain boundary precipitation
cies have no tendency of aggregation but simply distribute aind domain growth as parallel processes in binary alloys are
random in lattice. However, in our hybrid model the vacan-simulated in detail. We have revealed significant boundary
cies inside domains will be attracted toward DB’s to con-precipitating phenomena at a temperature just below the
sume part of the excess energy there. This sequence is espeitical point for the alloys where the solutes prefer onto
cially preferred aff gg=1.0 rather tharfgg=0.0. It is easily domain boundaries. At either high or low temperature, the
understood that they will not self-aggregate but just distribtendency of boundary precipitation is considerably weak-
ute randomly along DB'’s. ened. The strong temperature dependence of the morphology
What should be pointed out here is thiit,= ¢pgp=0 is  and size of the second phase, including those precipitating at
assumed in our model. It means that the like-spin pairs havdomain boundaries, is established. Typically stripelike
no interaction, the same as the species-vacancy pairs. Thi®undary precipitates are observed. Due to the favored
choice avoids any precipitation tendency of vacancies themboundary precipitation, the coarsening of the second phase is
selves, but is less relevant for real alloys because vacanagmarkably accelerated. No matter what the migration ability
segregation at the interfacial layer Afphase and phase of domain boundaries, the domain growth is seriously pinned
and DB’s as well is observed in real allo$fs* It is therefore by the boundary precipitates, although the domain pattern

VI. CONCLUSION
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and dynamic property of the boundary migration remain norsystems, indicating a number of interesting effects to be ex-
mal. Both the Lifshitz-Slyozov-Wagner law for the precipi- plored.

tate coarsening and the linear law for the domain growth are
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