Hysteresis loop area of the Ising model

Han Zhu,1,⁎ Shuai Dong,1 and J.-M. Liu1,2,†
1Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
2International Center for Materials Physics, Chinese Academy of Sciences, Shenyang, China

(Received 26 May 2004; revised manuscript received 14 July 2004; published 12 October 2004)

The hysteresis of the Ising model in a spatially homogeneous ac field is studied using both mean-field calculations and two-dimensional Monte Carlo simulations. The frequency dispersion and the temperature dependence of the hysteresis loop area are studied in relation to the dynamic symmetry loss. The dynamic mechanisms may be different when the hysteresis loops are symmetric or asymmetric, and they can lead to a double-peak frequency dispersion and qualitatively different temperature dependence.

The model. Before the results are presented, we first describe the model. (1) The evolution of the magnetization M in the mean-field Ising model is determined by the following equation:4

$$\frac{dM}{dt} = -M + \tanh \left(\frac{M + H(t)}{T} \right).$$

(2) In the MC simulation, the Hamiltonian of the two-dimensional Ising model in a spatially homogeneous field $H(t)$ can be written as

$$\mathcal{H}(|\sigma|; t) = -J\sum_{\langle i,j \rangle} \sigma_i \sigma_j - H(t)\sum_i \sigma_i.$$
found in Ref. 4. Generally, the area can be written as $A = A_{\text{stat}} + A_{\text{kin}}$, where A_{stat} is the possible nonzero static contribution existing even in the quasistatic limit, and A_{kin} is the kinetic contribution assuming the form of

$$A_{\text{kin}} \sim H_0^2 T^{-\beta} g[\tilde{\omega}(\omega, H_0, T)].$$

(4)

Here, $g(\tilde{\omega})$ has been believed to be a single-peak function and $\tilde{\omega}(\omega, H_0, T)$ has been supposed to have the form of $\omega/(H_0^2 T)^{\nu}$. There have been extensive theoretical efforts to determine the exact form of $g(\tilde{\omega})$, and the values and the physical meaning of the exponents. As we shall see below, the dynamic phase transition may lead to a double-peak frequency dispersion and a piecewise analytic function of temperature dependence.

The frequency dispersion of the hysteresis loop area. Figure 1(a) shows a typical result of the two-dimensional MC simulations, at temperature $T = 1.0 < T_c$. (When $T < T_c$, a dynamic symmetry loss can be observed as H_0 decreases from 4 to 0.) As is clearly shown in the curve with $H_0 < 2$, two distinct peaks can be observed. We name the left-hand side one as peak I and the right-hand side one as peak II. It is found that peak I occurs in the range where the hysteresis loops are symmetric and peak II is in the range of asymmetric loops. As the frequency is increased from peak I to peak II, a dynamic symmetry loss occurs.

Figure 1(b) shows a typical result of the MF calculations, at temperature $T = 0.5 < T_c$. Similarly, a double-peak function can be observed. However, there is a very important difference. Given relatively small values of H_0, it is possible that there is only peak II in the MF calculation. This is because the equilibrium magnetization can be obtained by solving the following equation:

$$-M + \tanh \left(\frac{M + H}{T} \right) = 0.$$

(5)

With H small enough and $T < T_c = 1$, there can be two stable solutions to Eq. (5), corresponding to two values of stable equilibrium magnetization (a positive and negative one). This means that the hysteresis loops can be asymmetric even in the quasistatic limit. By contrast, according to Ref. 4, in MC simulations the hysteresis loop is always symmetric in the quasistatic limit, as a result of fluctuation.

In the above discussions we provide evidence of two peaks I and II, which corresponds to the resonance of symmetric and asymmetric hysteresis loops, respectively. In the following, we give a general explanation of the physics origin of this observation. The existence of two peaks clearly indicates two time scales, corresponding to two different dynamic mechanisms. When the loops are symmetric, both the initial domain nucleation and the late stage domain growth are at work. As suggested by Liu et al., the observation of peak I means that a third time scale τ_1 can be defined as a combination of τ_n and τ_s, and the resonance occurs as $2\pi/\omega_R \sim \tau_1$. Since for the asymmetric loops the magnetization can be always well above or below zero, at any time during the system evolution we can observe most spins having the same direction. The late stage domain growth is relatively inhibited, and thus, the time scale τ_n corresponding to peak II shall be mainly determined by τ_s.

Compared with peak II, the resonance at peak I has been relatively well studied in the previous works. Some illustrations of the resonance at peak I can be found in, e.g., Refs. 9 and 11. In the following we focus on peak II, as illustrated in Figs. 2(a) and 2(b). Actually, the existence of peak II can be easily understood in the MF Ising model. As is mentioned above, when H is small enough, there can be two stable solutions of Eq. (5). Thus, with $\omega \rightarrow 0$, the hysteresis loop
reduces to a curve [the stable solution of Eq. (5), as shown in Fig. 2(b)]. In the other limit, with \(\omega \to \infty \), the system cannot respond to the external field and the hysteresis loop becomes a horizontal line. Thus, it is straightforward to predict the existence of a peak in the intermediate region, where the phase lag between the external field and the system response creates a hysteresis loop with a nonzero area. Note that the observation of peak II requires temperatures lower than the static critical point and small enough values of \(H_0 \). When \(H_0 \ll T \ll 1 \), we can give a quantitative description of the system behavior by solving the MF equation (1) analytically. We suppose \(1 - M = 0 \), and obtain

\[
\frac{dM}{dt} = 1 - M - 2 \exp\left(-\frac{2}{T}\right)\left(1 - \frac{2}{T}H_0 \sin(\omega t)\right).
\]

This equation can be exactly solved, and the loop area is obtained as

\[
A = - \int_0^{2\pi/\omega} Md(H_0 \sin \omega t),
\]

\[
= 4\pi \left[\frac{1}{T} \exp\left(-\frac{2}{T}\right) \right] H_0^2 \frac{\omega}{\omega^* + 1}.
\]

In the following, we report some important differences and similarities of peak I and II, as summarized from Eq. (6) and the numerical results in Fig. 1. Differences: (1) The temperature dependence of the height of peak II in the MF Ising model is obtained in Eq. (6), and is different from the previous \(T^{-1/2} \) prediction of peak I.\(^{17} \) (2) In the MF Ising model, the maximal area \(A_{\text{max}}^\text{II} \) at peak II grows with \(H_0 \) as \(H_0^6 \), while the maximal area \(A_{\text{max}} \) at peak I has been predicted to grow with \(H_0 \) linearly in the previous studies.\(^{17} \) This difference is explained by observing the variance of the loop shape with \(H_0 \), as illustrated in Figs. 3(a) and 3(b): At peak I, only the width of the loop increases with \(H_0 \) (that is why \(A_{\text{max}}^\text{I} \) grows linearly with \(H_0 \), while at peak II, the loop is expanding in two directions with \(A_{\text{max}}^\text{II} \) growing as \(H_0^2 \).

Similarities: (1) In both MF calculations and MC simulations, it is found that, as \(\omega \to \infty \), the area decays as \(\omega^{-1} \). [With respect to peak I, this is in accordance with the previous MF result and the work of Rao et al.\(^{18,19} \) on the (\(\Phi^4 \))\(^2 \) and (\(\Phi^4 \))^3 model, but not the previous MC result of the Ising model,\(^{4,17} \) which indicates an exponentially decaying function of \(g(\omega, H_0, T) \) in Eq. (4)]. (2) Independent of \(H_0 \) and \(T \), peak II is always observed to be at (or very close to) \(\omega_0 \approx 1 \). With regards to peak I, in both MC simulations and MF calculations we find that as \(H_0 \to \infty \), \(\omega_0 \) also approaches 1, which is different from the previous predictions. According to Refs. 4,17 the \(\omega_0 \) will also tend to infinity as \(H_0 \to \infty \). But it is not what we observe in Fig. 1, which shows that, as the field already far exceeds the spin-spin interaction, the time scale of the system is no longer sensitive to the value of \(H_0 \).

In the following, we turn to study the temperature dependence of the loop area with fixed field amplitude and frequency.\(^{13,17} \) Here, our motivation is quite similar to that of the above discussions of the frequency dispersion. When \(H_0 < 4 \) (MC) or \(H_0 < 1 \) (MF), a dynamic symmetry loss can be observed as \(T \) decreases (as can be predicted from the phase diagram previously obtained).\(^{4,12,16,17} \) Thus, a simple scaling function is not likely to exist for the loop area, since there are different dynamic mechanisms of the symmetric and asymmetric loops, and different time scale competition. This is supported by the MF and MC results.

A typical MF result is shown in Fig. 4(a). The order parameter \(|Q| > 0 \) for lower temperature and \(|Q| = 0 \) for higher temperature, and at the dynamic critical point, a dynamic symmetry loss occurs. In Ref. 13, using the same methods as the present work, Acharyya found that the area becomes maximum above the dynamic transition point. Here, it is clear that the temperature dependence of the loop area assumes different functions for the \(|Q| > 0 \) states and \(|Q| = 0 \) states. These different functions are separated by the dynamic critical point and the first-order derivative, \(\partial A / \partial T \), is
not continuous at the dynamic critical point. Thus, the temperature dependence is a piecewise analytic function. A typical MC result is shown in Fig. 4(b), and it is roughly similar to the MF result. Although we do not observe a notable discontinuity of the first-order derivative, \(\partial A/\partial T \), it is very obvious that the second-order derivative, \(\partial^2 A/\partial T^2 \), changes sign at the dynamic critical point. When \(H_0 > 4 \) (MC) or \(H_0 > 1 \) (MF), the field amplitude exceeds the spin-spin interaction and the hysteresis loops are always symmetric.\(^5\)\(^6\)\(^7\)\(^8\) In this case, we observe that the loop area decreases monotonically as the temperature grows.

To summarize, the hysteresis of the Ising model in an ac field, \(H(t) = H_0 \sin(\omega t) \) is studied using both mean-field calculations and two-dimensional Monte Carlo simulations. The frequency dispersion and the temperature dependence of the loop area are studied in relation to the dynamic symmetry loss. The dynamic mechanisms are different when the hysteresis loops are symmetric or asymmetric. For symmetric loops, the dynamics is a combined domain nucleation-and-growth process. By contrast, for asymmetric loops well above or below the \(M = 0 \) line, the dynamics may be mainly

domain nucleation. This framework is part of basic current knowledge of hysteresis phenomena, and the observed frequency and temperature dependence of the loop area is consistent with it. Double peaks can be observed in the frequency dispersion, and the temperature dependence is possibly a piecewise analytic function. Interestingly, the shift of the dynamic mechanism with the symmetry loss is also found in the mean-field calculation, and some striking similarities are observed (for example, the same position of peak II). Although the present work deals with a model spin system, the topics discussed have general meaning. Surely some quantitative details, like the position of the peaks, rely on the model setting, but we believe that the physics of the conclusions is not limited to the specific system studied here, and can be predicted for more general systems.

We thank Hao Yu for helpful discussions. This work is supported by the Natural Science Foundation of China (50332 020, 10021001) and National Key Projects for Basic Research of China (2002CB61 3303).

\(^{9}\)Present address: Department of Physics, Princeton University, Princeton, NJ 08544; Electronic address: hanzhu@princeton.edu

\(^{10}\)Author to whom correspondence should be addressed. Email address: liujm@nju.edu.cn

\(^{30}\)An exception is that, in the MF Ising model, with temperature \(T \) above \(T_c = 1 \), and \(H_0 \) very small, it is analytically obtained \(A \sim H_0^2T^{-4}\omega/(\varepsilon^2 + \omega^2) \), where \(\varepsilon = (T-1)/T \) (Ref. 4).