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Abstract
The undoped three-orbital spin-fermion model with the additional biquadratic
interaction which arises from various factors, such as quantum or thermal
fluctuation, is studied using the Monte Carlo method in order to investigate the
spin orders in pnictide superconductors. The simulations show that the experi-
mentally observed nematic state can be stabilized by the positive biquadratic
interaction, suggesting that such interaction may be another origin for nematicity
in pnictides in addition to the couplings to the lattice degrees of freedom. Fur-
thermore, the so-called flux state at low temperatures is identified when a rather
weak negative biquadratic interaction is introduced, which is the same as the
phase predicted in earlier theoretical work.

Keywords: iron-based superconductors, nematic state, spin-fermion model,
biquadratic interaction

1. Introduction

In the past few years, the magnetic orders of normal states of iron-based superconductors have
drawn extensive attention since the electron pairing mechanism in these materials may be
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related to spin fluctuations [1–4]. Experimentally, it was reported that the long-range
antiferromagnetic (AFM) order with a wave vector (π, 0) (inset of figure 1(a)) can be stabilized
in the parent compounds of most pnictides below the Néel temperature TN. Furthermore, a
structural transition from the tetragonal to the orthorhombic phase occurs at TS⩾ TN [5–7].

In order to understand the close relationship and possible bifurcation between TN and
TS, two different mechanisms involving the crucial component of spin [8, 9] and orbital
fluctuations [10, 11] have been proposed, respectively. Specifically, it is suggested in the
first scenario that the short range magnetic order (the nematic order) can be developed
before the stabilization of the long range AFM order, and drives the structural transition
[12]. This point of view is strongly supported by a recent work in which the evident scaling
relation between the magnetic and lattice fluctuations has been revealed [13]. In addition,
several theoretical attempts to understand the stabilization of the nematic order were
reported [14]. For example, the classical spin model with a rather large biquadratic
interaction has been explicitly studied using Monte Carlo (MC) simulations, and a small
separation of the nematic and AFM transition temperatures was predicted [15, 16]. This
phenomenon has also been qualitatively reproduced in another report in which a quantum
spin Heisenberg model for pnictides was investigated [12]. Furthermore, it has also been
suggested in a recent theoretical work studying an itinerant electron model, that the orbital
order in iron pnictides are induced by the nematic order [9].

In addition to the Heisenberg model, the spin-fermion (SF) model, which is somewhat
similar to the double-exchange model for manganites, has also been proposed for studying
the pnictide superconductors [17, 18]. Both itinerant electrons and localized spins are
included in the SF model, and the calculations have demonstrated the great success of this
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Figure 1. Calculated Φ(π, 0) and Ψ ((a) and (c)), and their susceptibilities ((b) and (d))
as a function of T at JBi= 0 ((a) and (b)) and JBi= 0.003 eV ((c) and (d)). Inset of
figure 1(a): schematic view of the (π, 0) AFM phase.



model for explaining complicated physics in these typical correlated electron systems. For
example, not only the magnetic and spectral properties of the ground state [19], but also the
in-plane resistivity anisotropy observed in BaFe2As2 [20, 21] can be qualitatively
reproduced in MC simulations using the three-orbital SF model [22]. In addition, the
lattice degrees of freedom have been introduced into this model to study the nematic state of
pnictides [23]. It is suggested that both the spin-lattice and orbital-lattice couplings are
indispensable in stabilizing the nematic order and lattice distortion observed in experiments.

However, the phase diagram of the isovalent-doping system BaFe2(As1 − xPx)2
recently obtained by the magnetic torque measurement reveals that the nematicity (with
transition point T*) can be developed well above both TN and TS [7]. To some extent, this
experimental phenomenon suggests that these couplings to the lattice degrees of freedom
may not be the only mechanism to stabilize the nematicity, and other possible factors
should also be responsible for the nematicity. This viewpoint is partially supported
by one of the earlier theories in which the structural and magnetic transitions
were assumed to occur independently [24]. On the other hand, it is expected that the
biquadratic interaction plays an essential role and can not be neglected in any model
calculation describing these systems [25, 26]. For pnictides, several possible origins for
this term such as quantum fluctuation and thermal fluctuation have been proposed [9]. In
fact, according to the electronic structure calculations, in iron pnictides, the biquadratic
coupling of intrinsic electronic origin is much larger than that generated by thermal
fluctuations or by magneto-structural coupling. As a matter of fact, this interaction has
been included in several phenomenological Heisenberg models in earlier reports
[12, 16, 27]. In these studies, only the localized spins are kept, while the itinerant
character of electrons, which is essential in understanding the experimental phenomena
such as the anisotropy of electrical transport, is completely ignored. In fact, the limitations
of such a pure spin model was revealed in earlier reports, which indicated the importance
of the itinerant character of electrons because most of these materials are metallic [16].
Overall, one may question whether the biquadratic interaction is really significantly
important to the magnetic properties in real pnictides instead of in a toy model of pure
spins. Therefore, here we carried out the MC study on the more sophisticated three-orbital
SF model [28] with the additional biquadratic interaction. Our simulation finds that the
experimentally reported T* > TN can be qualitatively reproduced when the positive
biquadratic interaction is considered. Thus, our MC simulations suggest that such
interaction may be another origin for the stabilization of the nematic order, in addition
to those couplings to the lattice degrees of freedom which has been verified earlier [23].
Furthermore, it is demonstrated that instead of the well-known (π, 0) stripe AFM order,
the exotic flux state [29, 30] can be stabilized at low temperatures (T) when a rather weak
negative biquadratic interaction is introduced to the SF model, in agreement with previous
studies based on the classical spin model [16].

2. Model and method

In this work, we studied the three-orbital SF model with the biquadratic interaction. The
Hamiltonian can be written as:
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In the above model Hamiltonian, the first term is the Fe-Fe hopping of itinerant
electrons with fermion spin σ in the xz, yz and xy d orbitals denoted by α or β. The operator

α σ
†ci, , α σ( )ci, , creates (annihilates) an electron at the orbital α of site i. Both nearest-neighbor

(NN) and diagonal next-nearest-neighbor (NNN) hoppings are considered, as explicitly
given in an earlier report [28]. The hopping amplitudes between different sites and
orbitals are shown in table 1, and the detailed mathematical forms were described in the
equations (1)–(3) of [28]. The second term is the AFM superexchange interaction between
NN localized spins S with coupling JNN, while the third term is that between NNN localized
spins with coupling JNNN. The fourth term is the Hund interaction between the localized
spin and the itinerant-fermion one at site i. The last term is the biquadratic interaction JBi
between NN localized spins. Note that most of these parameters have been exactly
calculated or reasonably estimated by the experimental data and first-principles calculations
in earlier reports [31], and were consistent with the magnetic and spectral properties of
the undoped compounds. In this work, these parameters are fixed to the same values as
previously reported [22]. For example, JHund is set to be 0.1 electron volts (eV), JNNN to be
0.01 eV, and the itinerant electron density to be 4/3. It has been demonstrated by linear
response calculations and density-functional calculations that the NN exchange constant
in iron pnictides is strongly anisotropic in the collinear state [32, 33]. To mimic such
anisotropy, the anisotropic NN couplings JNN

x = 0.016 eV and JNN
y = 0.014 eV along the x and

y axis are adopted in the following simulations if not noted explicitly. The physical
conclusion regarding the nematic state will not be affected by such a choice of anisotropic
JNN, [34], which will be clarified in detail later. In contrast to previous studies [23], the
lattice degrees of freedom are not included in this work, conveniently allowing us to focus
on the effects of the biquadratic interaction.

The above modeled Hamiltonian was studied via a combination of exact diagonalization
and MC simulation on a two-dimensional 8 × 8 lattice [35]. Typically, the first 104 MC steps are
used for thermal equilibrium and another 2 × 104 MC steps are used for measurements at each T
and for each set of parameters. To characterize the AFM spin orders, the spin structure factors at
wave vector ⃗q are calculated by performing Fourier transforms of the real-space correlation
functions [36]:
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Table 1. Values of the Fe-Fe hopping amplitudes (t1–t8) and the energy difference
between the xy and the degenerate xz/yz orbitals Δxy with the overall energy unit in
electron volts.

t1 t2 t3 t4 t5 t6 t7 t8 Δxy

0.02 0.06 0.03 −0.01 −0.2 0.3 −0.2 −0.1 0.4
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where N is the number of sites. On the other hand, the spin nematic order can be characterized
by short-range spin correlations, and the order parameter is defined as [37]:
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2
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The magnetic and nematic transition temperatures (TN and T*) can be estimated from the
positions of the peaks in the spin magnetic susceptibility χΦ(π, 0) and the spin nematic
susceptibility χΨ, respectively.

3. Results and discussion

3.1. Nematic phase above TN

First, figure 1(a) shows the calculated Φ(π, 0) and Ψ for various T at JBi= 0 as the original
results without the biquadratic interaction. The two curves coincide with each other very well,
indicating that the nematic and (π, 0) AFM orders are developed at identical T. This coincidence
can be verified by the results of susceptibilities χΦ(π, 0) and χΨ which are given in figure 1(b). It
is clearly demonstrated from the positions of the peaks in χΦ(π, 0) and χΨ that the nematic
transition occurs simultaneously with the Néel transition at TN = T* = 112.6 K.

Then, the simulated results at JBi = 0.003 eV are shown in figures 1(c) and (d). On the one
hand, it is observed that both TN and T* are higher than the original ones at JBi= 0, which can be
straightforwardly understood from the energy landscape. Specifically, it is noted that the
additional energy contribution due to the biquadratic interaction between NN spins can be
written as HBi=−JBicos

2 θij with θij as the angle between the NN spins. As a consequence, the
NN spins tend to be parallel or antiparallel with each other to satisfy the positive biquadratic
interaction, resulting in the stabilizations of the long range (π, 0) AFM order and the nematic
order as JBi increases. In other words, the effective magnetic coupling between NN spins are
enhanced by this JBi and stronger thermal fluctuations are needed to break these two orders,
leading to the fact that both these transitions shift toward the high-T side, as revealed in our
simulation.

On the other hand, an obvious separation between the nematic order parameter Ψ and the
AFM order parameter Φ(π, 0) can be observed in the JBi= 0.003 eV case. In the whole
investigated T range, Ψ stays well above Φ(π, 0), suggesting that the nematic transition occurs at
a temperature higher than TN. In addition, the difference in the positions of the two peaks of the
susceptibility curves clearly shows the separation between the nematic and (π, 0) AFM phase
transitions (TN = 118.4 K and T* = 123.4 K estimated from the peaks of χΦ(π, 0) and χΨ). As
pointed out in earlier reports, the nematic phase has a broken Z2 symmetry with short range NN
spin-spin correlations [35]. In this report, it is demonstrated that the Z2 symmetry can be broken
by the additional positive biquadratic coupling. In other words, our simulation suggests that
such an interaction may be another origin for the stabilization of the nematic order in pnictides
[38], in addition to the couplings to the lattice degrees of freedom [23, 39].

Other values of JBi are also simulated. As a summary, the simulated phase diagram for
positive biquadratic coupling (JBi> 0) is presented in figure 2. For nonzero positive biquadratic
JBi, two phase transitions occur: the first transition from the paramagnetic (PM) phase to the
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nematic phase occurs at T*, and then a successive transition to the (π, 0) AFM order occurs at
TN. Both transitions shift toward the high-T side with increasing JBi, indicating that both the
long range (π, 0) AFM order and the nematic order are favored by such an interaction, as
discussed above. The interesting region in the phase diagram (with yellow background) is just
the middle T range between T* and TN in which the nematicity is ordered but the global
magnetism remains disordered. Thus, the experimentally reported nematic transition above TN
for BaFe2As2 can be qualitatively reproduced when the additional positive biquadratic coupling
is introduced in the SF model.

Since an anisotropic JNN is adopted in the above simulation, which in principle breaks the
tetragonal-type rotation symmetry, it is necessary to check its contribution to nematic order,
which also breaks the symmetry between the x-axis and y-axis. Thus, the impact of the
anisotropy of the superexchange interaction JNN has been systematically investigated in order to
further verify this point. Figure 3 shows the simulated phase diagram in the (AJ, T) parameter
space for JBi= 0.003 eV. Here, AJ= J JNN

x
NN
y −1 is defined to characterize the degree of

anisotropy of the superexchange interaction. The separation between T* and TN persists even
when AJ is decreased to small values like 0.05. Therefore, the role of AJ in our simulation is
not to stabilize the nematic order but to provide a bias field to choose the preferred axis for

New J. Phys. 16 (2014) 053027 M H Qin et al

6

Figure 2. The phase diagram in the (JBi, T) plane for JBi> 0.

Figure 3. The phase diagram in the (AJ, T) plane at JBi= 0.003 eV.



already-formed nematic order. A similar method has been used in earlier simulations to choose
an axis in systems with degenerated axes [40]. Such a bias field is not mandatory in principle
but practically helpful in simulations to avoid multi-axes of nematic domains. In addition, the
simulation results shown in figures 1(a), (b) have definitely confirmed that the anisotropic JNN
can not induce the nematic order above TN although both of them break the tetragonal-type
rotation symmetry. In short, the formation of the nematic order is almost independent of the
superexchange anisotropy.

3.2. Possible flux phase

It was predicted in earlier first-principles calculations that the biquadratic coupling might
change sign in some other pnictides such as KFe2Se2 [16]. Thus, the behavior of the SF model
with the negative biquadratic interaction (JBi< 0) is also investigated for integrity in this report.
The simulated Φ(π, 0) and its susceptibility as a function of T for various negative values of JBi
are shown in figures 4(a), (b), respectively. For each JBi, two peaks are observed in the χΦ(π, 0)-T
curve, indicating the successive two phase transitions with decreasing T. At the first transition
point, spin structure factor Φ(π, 0) increases from the background baseline, while Φ(π, 0)
remains small (figure 4(c)), indicating a standard transition to the (π, 0) AFM phase. When T
falls down to the second transition point (TF), Φ(0, π) steeply increases, while the value of
Φ(π, 0) increases gradually. The MC snapshot (inset of figure 4(a)) at JBi=−0.002 eV and
T = 23 K shows the so-called flux state. It is noted that this state has four sites in one unit cell,
which is clearly depicted in the snapshot. For JBi < 0, NN spins tend to be perpendicular to each
other to satisfy the negative biquadratic interaction, leading to the stabilization of the flux state.
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Figure 4. Calculated Φ(π, 0) (a) and its susceptibility χΦ(π, 0) (b), Φ(0, π) (c) and χΦ(0, π)
(d) as a function of T for various negative values of JBi. Inset of figure 4(a): a snapshot
of the flux state at T= 23 K for JBi=−0.002 eV.



In fact, the flux transition point TF can also be estimated from the position of the peak in the
susceptibility of Φ(0, π), as shown in figure 4(d).

For the ideal flux state, the value of Φ(0, π) should be identical to Φ(π, 0). However, due to
the anisotropic JNN used in our simulation, they are not exactly equivalent. The anisotropic NN
exchange interaction favors the (π, 0) AFM order more than the (0, π) AFM one. Thus, there is
strong competition between the anisotropic exchange interaction and the negative biquadratic
coupling, leading to the fact that Φ(π, 0) is larger than Φ(0, π), as revealed in our simulations.
However, the real space pattern as shown in the inset of figure 4(a) is unambiguous and it is
clear that the obtained state is the flux order.

As expected, the flux state can be strongly stabilized by the negative biquadratic
interaction, and the transition point significantly shifts towards the high T side with the
increasing absolute value of negative JBi. As a result, the flux state occupies a considerable
region in the parameter space for negative values of JBi, as is clearly shown in the simulated
phase diagram (figure 5).

In fact, the possible flux state has been proposed in some earlier theoretical works to
explain the low value of magnetization in several pnictides [41–43]. In addition, the phase
diagrams of the effective Heisenberg model obtained by mean-field approximations and MC
simulations also show a rather large region with the flux state for negative biquadratic
couplings, similar to that presented in this work [16]. However, it is observed that the
anisotropy of the spin fluctuation spectrum increases with increasing T, which is inconsistent
with the experimental report, demonstrating the limitation of such a model [44]. Thus, our work
has verified the possibility of this flux magnetic ordering when a weak negative biquadratic
interaction (JBi=∼JNN/10) is introduced into the SF model. In fact, this flux state has been
predicted in the double-exchange models for manganites in earlier reports [28, 45], and
suggested to be associated with the anomalous Hall effect [29]. Thus, more interesting effects
may be caused by the flux state in the SF model, which remains to be checked. However, this
issue is beyond the scope of the present work.

4. Conclusion

In summary, the effect of the biquadratic interaction on the magnetic properties in iron-based
superconductors has been investigated based on the three-orbital spin-fermion model. It is
demonstrated that the experimentally reported nematic state can be developed when the
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Figure 5. The phase diagram in the (JBi, T) plane for JBi< 0.



additional positive biquadratic interaction is considered. Thus, our study suggests that such
interaction may be another origin for the nematic order, in addition to the couplings to the lattice
degrees of freedom that have been identified in earlier reports. In addition, the simulation shows
that the so-called flux state can be stabilized by a rather weak negative biquadratic interaction,
which goes beyond previous theoretical works based on the classical spin model.
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